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Abstract
Deep neural networks (DNNs) have become state-of-the-art
techniques of automatic speech recognition in the last few years.
They can be used at the preprocessing level (Tandem or Bottle-
Neck features) or at the acoustic model level (hybrid Hidden
Markov Model/DNN). Moreover, they allow exploiting mul-
tilingual data to improve monolingual systems. This paper
presents our investigation of the learning effect of neural net-
works in the context of multilingual Bottle-Neck features. For
this, we perform a visual analysis of the output of the Bottle-
Neck layer of a neural network using t-Distributed Stochas-
tic Neighbor Embedding. Our results show that multilingual
Bottle-Neck features seem to learn phoneme characteristics,
such as the F1 and F2 formants which characterize different
vowels, and other articulatory features, such as fricatives and
nasals which characterize consonants. Furthermore, they seem
to normalize language dependent variations and transfer the
learned representation to unseen languages.
Index Terms: multilingual Bottle-Neck features, visualization

1. Introduction
The performance of speech and language processing technolo-
gies has improved dramatically over the past decade with an
increasing number of systems being deployed in a large vari-
ety of languages and applications. However, most efforts to
date are still focused on a small number of languages. With
more than 6,900 languages in the world, one of the important
challenges today is to rapidly port speech processing systems to
new languages with little manual effort. Therefore, many stud-
ies have been conducted in multilingual and crosslingual speech
processing. One of the central ideas is the exploration of the
sharing factor between languages to improve the performance
of a speech processing system and also to benefit by rapidly
building a system for a new language [1].

Neural networks (NNs) have become one of the most im-
portant techniques to improve ASR performance in the last few
years. Two ways to incorporate the NNs techniques into the
ASR framework are commonly used: The first way is using the
Tandem approach [2] or Bottle-Neck features [3] to integrate
DNNs into ASR systems at the preprocessing level. The out-
put of a neural network or a small hidden layer (Bottle-Neck
layer) is used as speech features for recognition task. Another
way is to use a HMM/DNN hybrid system in which DNNs es-
timate the emission probabilities of the Hidden Markov Model
(HMM) states [4, 5, 6, 7, 8]. Both approaches were success-
fully applied to large vocabulary continuous speech recognition
(LVCSR) where they lead to a significant improvement in vari-
ous tasks with different data sets.

In the context of rapid language adaptation, the use of NNs
allows exploiting multilingual data to improve the monolingual
ASR performance. At the preprocessing level, previous stud-

ies [10, 11, 12, 13, 14, 15, 16, 17] showed that a multilayer
perceptron (MLP) trained with data of one or several languages
can be used to extract features for a new target language. Their
results revealed that using additional data of other languages to
train the MLP improved the ASR performance. Moreover, re-
cent studies [18, 19, 20, 21, 22] utilized multilingual data during
DNN training for acoustic modeling in different unsupervised
and supervised ways to improve the monolingual ASR perfor-
mance. All the results indicate that the shared hidden layer is
language independent and can be used to bootstrap the DNN for
new languages.

However, an analysis to figure out what exactly was learned
and why multilingual data can be used to improve the ASR per-
formance for new languages is still missing. In one of the very
few works on visualizing deep neural networks the authors con-
centrated on analyzing the input features which should be used
for DNN based acoustic modeling [23]. In contrast, the target of
this paper is to achieve a better understanding of the learning ef-
fect of a neural network. For this, we perform a visual analysis
of the output of the multilingual Bottle-Neck features supple-
mented by measuring the clustering quality using the Davies-
Bouldin index [24]. We aim at finding potential answers to what
the multilingual MLP learns and whether the BN representation
transfers to new languages.

2. Data Resource and Baseline System
GlobalPhone is a multilingual text and speech corpus that cov-
ers speech data from 20 languages [25]. It contains more than
400 hours of speech spoken by more than 1900 adult native
speakers. For this work, we select French, German, Spanish,
Bulgarian, Polish, Croatian, Russian, Portuguese, Mandarin,
Korean, Thai, Japanese and Vietnamese data from the Global-
Phone corpus. In addition, we use the English speech data from
WSJ0. In our experiments, we simulate the case of low-resource
languages in which we select only 2 hours of Vietnamese train-
ing data as target language and the remaining ones as source
languages.

The baseline recognizer for the target languages can be de-
scribed as follows: the language model is built with a large
amount of text data which was crawled using the Rapid Lan-
guage Adaptation Toolkit [26]. For acoustic modeling, we
apply the multilingual rapid bootstrapping approach which is
based on a multilingual acoustic model inventory trained from
seven GlobalPhone languages [1]. To bootstrap a system in a
new language, an initial state alignment is produced by select-
ing the closest matching acoustic models from the multilingual
inventory as seeds. The standard front-end is used by applying
a Hamming window of 16ms length every 10ms. Each feature
vector has 143 dimensions resulting from stacking 11 adjacent
frames of 13 MFCC coefficients each. A Linear Discriminant
Analysis transformation reduces the feature vector size to 42 di-



mensions. For Vietnamese ASR, we merge monosyllable words
to bi-syllable words to enlarge the context in acoustic model-
ing and the history of the language model [27]. The trigram
perplexity, out-of-vocabulary rates and vocabulary size of the
LM are 176, 0% and 30k, respectively. The syllable error rate
(SyllER) is 26.0% on the test set.

3. Multilingual MLP training
In this work, audio data of 12 different languages, namely En-
glish, French, German, Spanish, Bulgarian, Polish, Croatian,
Russian, Mandarin, Korean, Thai, and Japanese is used to train
the multilingual multilayer perceptron. We use the knowledge-
driven approach to create a universal phone set, i.e. the phone
sets of all languages are pooled together and then merged based
on their IPA symbols. Afterwards, some training iterations are
applied to create the multilingual model and, thereafter, the
alignment for the complete data set. As input for the MLP
network, we stack 11 adjacent MFCC feature vectors and use
phonemes as target classes. A five layer MLP is trained with
a 143-1500-42-1500-152 feed-forward architecture using ICSI
QuickNet3 software [28]. We use a learning rate of 0.008 and a
scale factor of successive learning rates of 0.5. The initial values
of the network were chosen randomly. On the cross-validation
data (10% of the training data) the frame-wise classification ac-
curacy of the multilingual MLP is 60.15%. We directly use the
multilingual MLP to extract the Bottle-Neck features for the
Vietnamese ASR. The SyllER is improved to 21.2% on the test
set which is more than 20% relative improvement compared to
the baseline system (Section 2).

4. Visualization and Evaluation
The multilingual BN features are visualized using t-Distributed
Stochastic Neighbor Embedding (t-SNE) [29], an extension of
SNE [30]. This technique allows visualizing high-dimensional
data by assigning each data point a location in two or three-
dimensional space. SNE starts by converting high-dimensional
Euclidean distances between data points into conditional prob-
abilities that represent similarities. The similarity of data point
xj to data point xi is the conditional probability pj|i that xi
would pick xj as its neighbor if neighbors were picked in pro-
portion to their probability density under a Gaussian centered at
xi. For the low-dimensional counterparts yi and yj of the high-
dimensional data points xi and xj a similar conditional proba-
bility qj|i is computed. If the mapped points yi and yj correctly
model the similarity between the high-dimensional data points
xi and xj , the conditional probabilities pj|i and qj|i will be
equal. Based on this observation, SNE aims at finding a low-
dimensional data representation that minimizes the mismatch
between pj|i and qj|i. A natural measure for this mismatch is
the Kullback-Leibler divergence. SNE minimizes the sum of
Kullback-Leibler divergences over all the data points using a
gradient descent method. The cost function C used by SNE is
given by

C =
∑
i

KL(Pi|Qi) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

(1)

in which Pi represents the conditional probability distribution
over all other data points given data point xi, and Qi represents
the conditional probability distribution over all other mapped
points given mapped point yi. Although SNE constructs rea-
sonably good visualizations, the cost function is difficult to op-
timize. Therefore t-SNE uses a cost function that differs from

Figure 1: Multilingual BN features of five vowels from
French (+), German (�) and Spanish (5): /a/ (black), /i/ (blue),
/e/ (green), /o/ (red), and /u/ (yellow)

the one used by SNE in two ways: (1) it uses a symmetrized ver-
sion of the SNE cost function with simpler gradients and (2) it
uses a Student-t distribution rather than a Gaussian to compute
the similarity between two points in the low-dimensional space.
The t-SNE software [31] is used in our further experiments.

To support the visualization, we apply the Davies-Bouldin
index (DB) [24] for cluster evaluation:

DB =
1

n

n∑
i=1

max
i6=j

(
σi + σj

d(ci, cj)

)
(2)

where n is the number of clusters, cx is the centroid of cluster x,
σx is the average distance of elements in x from cx and d(·, ·)
is the distance between two elements. This index takes into
account the variance within each cluster and the distance of the
cluster means: a lower value means that the elements in the
same cluster are clustered closer together and that the clusters
are further away from each other, hence a lower value signifies
better clusters.

5. Analysis
We apply t-SNE to visualize the BN features to find potential
answers to the following questions:

• What does the multilingual MLP learn?

• Does the BN representation transfer to new languages?

The following paragraphs discuss the visualization of the BN
features and possible implications.

The multilingual MLP trained on 12 languages (Section 3)
is used to extract the BN features. Since the number of lan-
guages is quite large for the visualization, only the data of Ger-
man, French, Spanish, and Vietnamese are plotted. Note that
Vietnamese is not related to German, French, and Spanish. To
explore the crosslingual effect, only the phonemes are selected
that occur in all four languages according to their IPA represen-
tation. These are the five vowels /a/, /i/, /e/, /o/, /u/ and twelve
consonants /f/, /j/, /k/, /l/, /m/, /n/, /ng/, /p/, /s/, /t/, /v/, /z/. The
consonants are further divided into voiced (/j/, /l/, /m/, /n/, /ng/,
/z/) and unvoiced (/f/, /k/, /p/, /s/, /t/, /v/) consonants.

5.1. What does the multilingual MLP learn?

We use t-SNE to plot multilingual BN features of the five vow-
els on the right in Figure 1. The data points are collected by
using French (+), German (�) and Spanish (5) speech data.
On the left of Figure 1, we show the IPA vowel chart and the



(a) (b)
Figure 2: Multilingual BN features from French, German and
Spanish for (a) voiced consonants /j/ (red), /l/ (orange), /m/
(turquoise), /n/ (violet), /ng/ (green), /z/ (salmon), (b) unvoiced
consonants /f/ (black), /k/ (blue), /p/ (purple), /s/ (brown), /t/
(green), /v/ (yellow)

vowel-triangle with the five vowels annotated with correspond-
ing colors. The vowel-triangle expresses which vowels have
which formants on average. Interestingly, an analogy of the vi-
sualization with the other two pictures can be observed: The
data points of the five vowels from the three different languages
resemble the relations of the vowels in the vowel chart and the
vowel-triangle.

In Figure 2 we plot the multilingual BN features of voiced
and unvoiced consonants. We observe that phonemes sharing
articulatory features are clustered together while phonemes with
different features are clearly separated. In the plot of the voiced
consonants (Figure 2a) the features for the nasals /m/, /n/, /ng/
are close together and clearly separated from the palatal /j/ and
the alveolars /l/ and /z/. In the plot of the unvoiced consonants
(Figure 2b) the fricatives /f/, /s/, /v/ are clearly separated form
the plosives /k/, /p/, /t/. We observe that within the clusters
for articulatory features the BN features of the consonants from
the different languages are also clustered together by phoneme.
However, the separation between phonemes sharing articulatory
features is not as clear as the separation between phonemes that
do not share these features. In particular, the palatal, alveolar
and fricative phonemes form distinct individual clusters while
the clusters of the different nasal and plosive phonemes overlap.

The observations on vowels and consonants data suggest
the following implications:

• BN features seem to discriminate articulatory features:
1) The vowels resemble the pattern of the IPA vowel
chart and the vowel-triangle; the MLP has learned spec-
tral characteristics of different vowels, namely the first
two formants F1 and F2. 2) The consonants that share
articulatory features form distinct clusters.

• BN features seem to normalize the language dependent
variations of phonemes. Although the data points are
from different languages, the phonemes representing the
same IPA symbol are clustered together.

5.2. Does the BN representation transfer to new languages?

As described in Section 3, we obtain significant improvements
in terms of SyllER by using the multilingual MLP directly with-
out re-training to extract the BN features for Vietnamese ASR.
This indicates that some language independent information has
been learned by the multilingual MLP. However, it is not clear
how exactly the language independent information is repre-
sented in this context. In the previous paragraph, we observe
that the multilingual MLP captures articulatory features such as
F1 and F2 for vowels and normalizes language variations.

Figure 3: Multilingual BN features for Vietnamese vowels: /a/
(black), /i/ (blue), /e/ (green), /o/ (red), and /u/ (yellow)

5.2.1. Multilingual BN representation for an unseen language

In this paragraph, we visualize the BN features of Vietnamese
data using this multilingual MLP to obtain a better understand-
ing of the crosslingual transfer effect. Moreover, we look at two
further effects: The language independence of the BN features
and the discriminability of the multilingual BN features for un-
seen languages. Note that German, French and Spanish were
among the languages used to train the multilingual MLP while
Vietnamese is the unseen language in our example. We plot
multilingual BN features of the five Vietnamese vowels on the
right hand side of Figure 3. On the left hand side of Figure 3,
we show the vowel chart and the vowel-triangle again. We ob-
serve the same effect as by visualizing the multilingual phones
in Figure 1. The data points of the five Vietnamese vowels again
represent the relations in the vowel chart and the vowel-triangle.
This indicates that the learning effect, in this case the F1 and F2
information, can be transferred to the new language.

The multilingual BN features for voiced and unvoiced con-
sonants are plotted in Figures 4 and 5, respectively. The left
hand side shows the multilingual features for French, German
and Spanish, the right hand side shows the multilingual fea-
tures for Vietnamese. The effect for the Vietnamese phonemes
is the same as for the multilingual phonemes: the features are
clustered by the articulatory features of the phonemes. Within
each articulatory feature cluster, the features are grouped by
phonemes. As with the multilingual features the phoneme clus-
ters are better separated for some phonemes than for others.

We observe for both consonants and vowels that the learn-
ing effect has been transferred to the unseen language. This
means the multilingual BN features are language independent
and can be used for feature extraction for an unseen language.

(a) (b)
Figure 4: Multilingual BN features for voiced consonants from
(a) French, German and Spanish, and (b) Vietnamese: /j/
(red), /l/ (orange), /m/ (turquoise), /n/ (violet), /ng/ (green), /z/
(salmon)



(a) (b)
Figure 5: Multilingual BN features for unvoiced consonants
from (a) French, German and Spanish, and (b) Vietnamese: /f/
(black), /k/ (blue), /p/ (purple), /s/ (brown), /t/ (green), /v/ (yel-
low)

Figure 6: BN features of Vietnamese vowels using a French
MLP: /a/ (black), /i/ (blue), /e/ (green), /o/ (red), and /u/ (yellow)

5.2.2. Monolingual BN representation for an unseen language

Since the BN representation transfers to unseen languages, we
investigate whether is is important to use a multilingual MLP
or if the same result can be achieved with a monolingual MLP.
For this investigation we plot again the BN features of the same
Vietnamese vowels and consonants as before. However, in this
case only a monolingual MLP – a French MLP trained with
random initialization – was used to extract the features. Again,
Vietnamese data is not used for the MLP training. Figure 6 il-
lustrates the IPA vowel chart and the vowel-triangle on the left
and on the right the Vietnamese data points. Again, the same
effect as in Figures 1 and 3 is observed: The data points of the
five Vietnamese vowels illustrate the relations in the vowel chart
and the vowel-triangle. Figures 7 and 8 show the data points of
voiced and unvoiced consonants. As with the multilingual fea-
tures the consonants are clustered by articulatory features and
by phoneme. This indicates that the MLP learned the articula-
tory features such as spectral characteristics, namely F1 and F2
of different vowels. The MLP transfers this knowledge to an
unseen language independent of whether monolingual or multi-
lingual data are used to train the MLP. However, the analogy
between the pattern in the plotted data points and the vowel
charts in Figure 3 is clearer than in Figure 6, and the separa-
tion of the consonant clusters is clearer in Figures 4 and 5 than
in Figures 7 and 8. It can be observed in Figure 6 that some
data points of phonemes /a/ and /e/ are spread and form a pat-
tern close to phoneme /i/. In Figure 5 we observe that plosive
features divide the phoneme /s/ from the other fricatives. One
possible explanation for this effect is that the more languages
and more data are used to train the MLP, the stronger is the nor-
malization process between languages at the phoneme level.

(a) (b)
Figure 7: BN features for voiced Vietnamese consonants from
(a) a multilingual MLP , (b) a French MLP: /j/ (red), /l/ (orange),
/m/ (turquoise), /n/ (violet), /ng/ (green), /z/ (salmon)

(a) (b)
Figure 8: BN features for unvoiced Vietnamese consonants
from (a) a multilingual MLP , (b) a French MLP: /f/ (black),
/k/ (blue), /p/ (purple), /s/ (brown), /t/ (green), /v/ (yellow)

5.2.3. Comparing Cluster Quality

In addition to the visual analysis we use the Davies-Bouldin
index (DB) to measure the quality of the clusters formed by the
BN features for vowels, voice and unvoiced consonants. For
each category, we use the original 42-dimensional BN features
of multilingual data (FR, GE, and SP), and Vietnamese data
using multilingual MLP and French MLP and compute the DB
indexes. Note that they are exact the same data which were
used for the visualization. The results in Table 1 support our
observation based on the visualization results especially for the
case of consonants. For vowels, it seems that using the French
MLP is more accurate to extract features for recognition task
than using the multilingual MLP.

MLP Language(s) DB Index
v vc uc

Multilingual French, German, Spanish 4.2 3.1 3.8
Multilingual Vietnamese 4.0 3.3 3.7
French Vietnamese 3.3 3.8 4.1

Table 1: Davies-Bouldin index (DB) for the analyzed BN fea-
tures for vowels (v), voiced (vc) and unvoiced (uc) consonants.

6. Conclusions
This paper presents our investigation of the learning effect of
the neural networks in the context of multilingual Bottle-Neck
features. We show that their visualization using t-SNE provides
useful information to better understand the multilingual BN fea-
tures. Our results reveal that multilingual BN features seem to
learn articulatory characteristics of the phonemes. For vowels
these are the F1 and F2 formants, while for consonants these
are features, such as fricatives, nasals and plosives. Further-
more, the BN features seem to normalize language dependent
variations of the phonemes. Their representation is transferred
to unseen languages which further indicates their language in-
dependence. In the future, we plan to perform an analysis of all
the layers of a multilingual DNN.
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