
Speech Recognition on
English-Mandarin Code-Switching

Data using Factored Language
Models

- with Part-of-Speech Tags, Language ID and Code-Switch
Point Probability as Factors

Diplomarbeit at the Cognitive Systems Lab
Prof. Dr.-Ing. Tanja Schultz
Department of Informatics

Karlsruhe Institute of Technology

and at the Human Language Technology Center
Dr. Pascale Fung, Associate Professor

Department of Electronics and Computer Engineering
Hong Kong University of Science and Technology

by

cand. inform.
Jan Gebhardt

Supervisors:

Prof. Dr.-Ing. Tanja Schultz
Dr. Pascale Fung, Associate Professor
Dipl. Inform. Tim Schlippe

Tag der Anmeldung: 1. Oktober 2010
Tag der Abgabe: 31. März 2011

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

21. März 2011

Abstract

Code-switching is defined as ”the alternate use of two or more languages in the same
utterance or conversation” [1]. CS is a wide-spread phenomenon in multilingual
communities, where multiple languages are concurrently used in a conversation.

For automatic speech recognition (ASR), particularly intra-sentential code-switching
poses an interesting challenge due to the multilingual context for language modeling
and the acoustic model. The statistical estimation of n-grams at code-switch points
(CSP) is poor for common, word-based n-gram language models.

Our work investigates the application of additional features for ASR on Mandarin-
English speech data containing intra-sentential CS.

First we explore the use of various features for multilingual language modeling by
predicting language and CSPs. We investigate the text based prediction of the
language of a word, utilizing language, part-of-speech (POS) tags and occurrence
features of previous words in the current utterance. The results of our language
prediction experiments are used to predict CSPs. We can reach an improvement
compared to random predictions of CSPs. The results of our experiments to predict
language and CSPs indicate, that it is useful to add language and POS tag features
in the multilingual language model applied on CS data.

Consequently, we include language identification (LID), POS tags, and a CSP prob-
ability class into the language model. We utilize factored language models to incor-
porate these features. N-best rescoring is applied to use factored language models
for speech recognition. We obtain the highest performance utilizing factored lan-
guage models with LID, POS tags and words as features. We evaluate our results
utilizing a mixed error rate (MER). The MER is defined as the character error rate
(CER) for Mandarin and the word error rate (WER) for English. Using our best
performing factored language model, we improve the MER performance from 59.1%
to 58.4% on the development set and from 60.8% to 59.8% on the evaluation set.

Acknowledgements

First, I would like to thank Prof. Tanja Schultz for providing me the opportunity
to conduct research abroad at the Hong Kong University of Science and Technology
and supervising my work at the Cognitive Systems Lab.

Furthermore I would like to thank Prof. Pascale Fung and Dipl. Inform. Tim
Schlippe for supervising my work and supporting me with their advice, ideas and
helping me with problems.

Also I would like to thank Ying Li, Ho Yin Chan, Jian Zhang, Ying Dou, Thang
Vu, Fabian Blaicher, Dominic Telaar, Franziska Kraus, Edy Guevara Komgang and
Sebastian Ochs for their support.

My research at the Hong Kong University of Science and Technology was supported
by the Baden-Württemberg-Stipendium (interACT) granted by the Landesstiftung
Baden-Württemberg.

Zusammenfassung

Code-switching (CS) ist definiert als die Verwendung von mehr als einer Sprache in-
nerhalb eines Satzes oder einer Konversation. CS ist ein weit verbreitetes Phänomen
in mehrsprachigen Gemeinschaften, in denen mehrere Sprachen gleichzeitig in Kon-
versationen verwendet werden.

Für die automatische Spracherkennung (ASR) stellt insbesondere intraphrasales
Code-Switching aufgrund des Sprachwechsels innerhalb von Sätzen eine interessante
Herausforderung dar. Die statistische Schätzung von N-Grammen mit Sprachwech-
sel in normalen N-Gram Sprachmodellen ist schwierig.

In unserer Arbeit wird der Nutzen von zusätzlichen Merkmalen für ASR auf chinesisch-
englischen Sprachdaten mit intraphrasalem CS untersucht.

Um den Nutzen von verschiedenen Merkmalen für multilinguale Sprachmodellierung
zu untersuchen, wurde die Sprache von Wörtern und die Punkte für Sprachwech-
sel (CSP) prädiziert. Wir bewerten unsere Ergebnisse auf dem Development Set
und dem Evaluation Set. Das Development Set wird verwendet um geeignete Klas-
sifikatoren für unsere Prädiktionsexperimente auszuwählen, Designs für faktorierte
Sprachmodelle (FLM) zu evaluieren und ASR Parameter zu bewerten. Die textbasierte
Vorhersage der Sprache eines Wortes wird basierend auf der Sprache, Part-of-speech
(POS) Tag und der Anzahl vorheriger Worte in dem aktuellen Satz durchgeführt.
Dabei erreichen wir ein F-Measure von 0,926 auf unserem Development Set und
0,901 auf unserem Evaluation Set. Basierend auf unseren Experimenten zur Vorher-
sage der LID prädizieren wir CSPs. Wir erreichen ein F-Measure von 0,205 auf
unserem Development Set und 0,300 auf unserem Evaluation Set. Wir konnten uns
gegenüber einer zufälligen Prädiktion von CSPs verbessern, da bei der zufälligen
Prädiktion nur ein F-Measure von 0,116 auf dem Development Set und 0,142 auf
dem Evaluation Set erreicht wurde. Wir stellen also fest, dass LID und POS Tag
nützliche Informationen für das Sprachmodell bei CS enthalten.

Der Fokus unserer Arbeit liegt in der Integration und Bewertung von POS Tags,
LID und einer klassifizierten CSP Wahrscheinlichkeit in das Sprachmodell. Wir
bestimmen die POS Tags aus unseren Textdaten unter Verwendung von POS Tag-
gern. Die LID wird regelbasiert aus den Texten abgeleitet. Aufgrund der unter-
schiedlichen Schriften von Chinesisch und Englisch, kann die LID fehlerfrei bes-
timmt werden. Die CSP Klassen werden basierend darauf, ob nach dem aktuellem
Wort ein CSP folgt, bestimmt. Die Einschätzung der CSP Wahrscheinlichkeiten er-
folgt auf unseren Trainingsdaten. FLMs werden verwendet um LID, POS Tags und
CSP Wahrscheinlichkeiten in unseren Sprachmodell zu integrieren und ein N-best
Rescoring durchzuführen. Die höchste Verbesserung erreichen wir mit FLMs die
neben Wörtern, LID und POS Tags beinhalten. Zur Bewertung unserer Ergebnisse
verwenden wir eine Mischfehlerrate (MER), die sich aus der Wortfehlerrate für En-
glisch und aus der Zeichenfehlerrate für Chinesisch zusammensetzt. Mit unserem
FLM mit der besten Performance, können wir die MER auf dem Development Set
von 59,1% auf 58,4% und auf dem Evaluation Set von 60,8% auf 59,8% reduzieren.

Contents

1 Introduction 1
1.1 Goal . 1
1.2 Structure of our Work . 2

2 Fundamentals 3
2.1 Code-Switching . 3

2.1.1 Attitudes toward Code-Switching 4
2.1.2 Reasons for Code-Switching 4
2.1.3 Mechanics of Code-Switching 5

2.2 Automatic Speech Recognition Basics 5
2.2.1 Language Model . 5
2.2.2 Mixed Error Rate . 7

2.3 Related Work . 8
2.4 Evaluation Measures for Classification 10

3 Database and Tools 11
3.1 Mandarin-English Code-Switching Database 11

3.1.1 Database Split . 11
3.2 Waikato Environment for Knowledge Analysis 14
3.3 SRI Language Modeling Toolkit . 14
3.4 Janus Recognition Toolkit . 15
3.5 Part-of-Speech Tagger . 15

4 Experiments 17
4.1 Part-of-Speech Tagging . 17
4.2 Text Based Prediction of LID and Code-Switch Points 21

4.2.1 Motivation of our Prediction Experiments 21
4.2.2 Related Work . 21
4.2.3 Predicting Language . 22
4.2.4 Evaluation of Predicted Language Identification 24
4.2.5 Features for Predicting the Language of a Word 25
4.2.6 Predicting Language Identification with Omitted Language

Identification Features . 26
4.2.7 From Predicting Language Identification to Predicting Code-

Switch Points . 28
4.2.8 Evaluation of Predicted Code-Switch Points 29
4.2.9 Summary of our Prediction Experiments 31

4.3 Baseline Speech Recognition System 32
4.4 Factored Language Models - Fundamentals 33

x Contents

4.4.1 Backoff for FLMs . 35
4.4.2 Generalized Backoff . 36
4.4.3 FLM Training Data Format 37
4.4.4 FLM File . 37
4.4.5 Data-driven Search of FLM Parameters 39

4.5 FLMs for Recognizing Utterances with intra-sentential CS 40
4.5.1 N-Best Rescoring with Factored Language Models 42
4.5.2 FLM Design . 42
4.5.3 N-Best Rescoring Parameters 45
4.5.4 FLM N-Best Rescoring Framework 45
4.5.5 Evaluation of FLM Designs using N-Best Rescoring 48
4.5.6 Effect of the Number of Generated Hypotheses per Utterances 52
4.5.7 Oracle Experiment . 54
4.5.8 Significance of our Results . 55
4.5.9 Summary of our FLM experiments 56
4.5.10 Limits of this Work and Future Prospects 56

5 Summary 59

Bibliography 61

1. Introduction

With the ongoing globalization, the contact between people with different origins
and mother tongues increases. Particular in communities, where a significant share
of people from foreign origin work, multiple languages are present. Changing the
language in conversations is very common in informal settings for multilingual speak-
ers [2]. For example in Hong Kong where Chinese (Cantonese and Mandarin)
and English are spoken languages, code-switching is a wide-spread phenomenon.
Code-switching is defined as ”the alternate use of two or more languages in the
same utterance or conversation” [1]. It can happen inside utterances or at their
boundaries. Code-switching inside utterances is referred to as intra-sentential code-
switching while code-switching at utterance boundaries is called inter-sentential
code-switching.

In the context of automatic speech recognition, code-switching poses an interesting
challenge. Code-switching leads to increased complexity considering resources like
the vocabulary and dictionary. In particular the statistical estimation of n-grams is
poor for common, word-based n-gram language models.

1.1 Goal

The goal of our work is to investigate means to add information for speech recog-
nition, which may be useful for recognizing speech recognition with code-switching
inside utterance.

We perform experiments with text-based prediction of language and code-switching
points based upon language identification, part of speech tag and occurrence features
of preceding words in the current utterance. With these prediction experiments, we
investigate if language identification and part-of-speech tag features may contain
useful features for recognizing utterances with intra-sentential code-switching. Our
main focus is to integrate language identification, part of speech tag, and code-switch
point probabilities in the multilingual language model for speech recognition. We
utilize factored language models [3] for this task.

2 1. Introduction

1.2 Structure of our Work

Chapter 2 describes the fundamentals of code-switching including attitudes and rea-
sons for code-switching as well as the mechanics for code-switching. The basics
of speech recognition are also described in this chapter. Additionally, we provide
information about code-switching and speech recognition, especially considering re-
lated work. Afterwards we describe evaluation methods for classification which we
need for further experiments.

Chapter 3 contains the description of our Chinese-English database and tools we
applied for this work. We describe the properties of the database and our split in
training, development and evaluation set.

Chapter 4 is the main part of this work. This chapter consists of

• Part-of-speech tagging for English-Mandarin data containing intra-sentential
code-switching.

• Text based prediction of language identification and code-switching points.

• Our baseline speech recognition system.

• Fundamentals about factored language models.

• Our experiments to utilize factored language models for recognizing utterances
with intra-sentential code-switching.

Chapter 5 is a summary of our work.

2. Fundamentals

2.1 Code-Switching

Changing the language in conversations is very common in informal settings for
multilingual speakers [2]. Code-switching is defined as

• ”the alternate use of two or more languages in the same utterance or conver-
sation” [1].

Another definition for code-switching by [4] defines it as:

• ”the juxtaposition within the same speech exchange of passages of speech be-
longing to two different grammatical systems or subsystems.”

An example of French-English code-switching [1]:

• ”Va chercher Marc (go fetch Marc) and bribe him avec un chocolat chaud (with
a hot chocolate) with cream on top.”

Another example for code-switching in Spanish-English [1]:

• ”No me fije hasta que ya no me dijo (I didn’t notice he told me): Oh I didn’t
think he’d be there.

The difference in these two examples is that in the first example code-switching
happens inside the sentence, while in the second example code-switching happens at
sentence boundaries. Therefore the majority of the authors divide code-switching
into two types:

• Inter-sentential code-switching: code-switching at utterance or sentence bound-
aries.

4 2. Fundamentals

• Intra-sentential code-switching: code-switching inside an utterance or a sen-
tence.

Inter-sentential code-switching is a special case of intra-sentential code-switching.
For code-switching, the matrix language and the embedded language are important
terms [5]:
The matrix language for an utterance is the language, where the majority of words
in the utterance belongs to. For code-switching involving two languages, like in our
case, all words in an utterance, which do not belong to the matrix language, belong
to the embedded language.
Code-switching should not be confused with borrowing, where foreign words are
included and integrated morphologically and phonologically into the local language.

2.1.1 Attitudes toward Code-Switching

An interesting field is the perception of code-switching by the people, who use code-
switching. Grosjean [1] describes that monolinguals had a negative attitude towards
code-switching for a long time, since it was seen as a grammar-lacking mixture
of two languages. People who used code-switching extensively were often said to
know none of the languages they speak well enough to converse in one language
alone. Monolinguals seem to have a negative attitude towards code-switching. Con-
sequently, some multilinguals restrict code-switching to situations where they will
not be stigmatized for switching languages. However, code-switching is a very useful
communication phenomenon. It often happens unconsciously and speakers may be
unaware that they code-switch. The main objective for a (multilingual) speaker is
that the recipients get the message and intent of the speaker.

2.1.2 Reasons for Code-Switching

Grojean [1] wrote that bilinguals say that the reason for code-switch is the lack of
facility in one language for a particular topic. Frequently, bilinguals know the words
in both languages, but a word may be more available in the language they currently
do not speak. He provides a list of reasons for code-switching:

• Fill a linguistic need for a lexical item, set phrase, discourse marker or sentence
filler.

• Continue the last language used (triggering).

• Quote someone.

• Qualify message: amplify or emphasize (topper in argument).

• Specify speaker involvement (personalize message).

• Mark and emphasize group identity (solidarity).

• Convey confidentiality, anger and annoyance.

• Exclude someone from conversation.

• Change role of speaker, raise status, add authority, show expertise.

2.2. Automatic Speech Recognition Basics 5

2.1.3 Mechanics of Code-Switching

This subsection deals with the position of intra-sentential code-switch points. The
research for intra-sentential code-switching has focused on syntax. Linguists pro-
posed several constraints for code-switching. The most common ones are described
below [6]:

• Free-morpheme constraint: “A switch may not occur between a bound mor-
pheme and a lexical form unless the latter has been phonetically integrated
into the language of the bound phoneme”. A bound morpheme is a morpheme,
which exclusively appears as a part of a longer word and cannot stand alone
[7].

• Equivalence constraint: “the order of sentence constituents immediately ad-
jacent to and on both sides of the switch point must be grammatical with
respect to both languages involved simultaneously”.

All of the proposed constraints are controversial as linguists have offered apparent
counter examples [8] [9]. Therefore we did not consider any of these constraints in
our work. We investigate the use of different features for prediction and language
modeling using data containing code-switching.

2.2 Automatic Speech Recognition Basics

Automatic speech recognition (ASR) aims to generate the accurate written tran-
scription from the spoken utterance [10]. According to [11], we apply digital sig-
nal processing and feature extraction to the input speech which will provide a se-
quence of acoustic vectors Y = y1, y2, An utterance consists of a word sequence
W = w1, w2, ..., wm. Our goal is to obtain the most likely word sequence Ŵ corre-
sponding to the spoken utterance which is calculated using the fundamental equation
of speech recognition:

Ŵ = argmaxWP (W |Y) = argmaxW
P (W) · P (Y |W)

P (Y)
(2.1)

P (Y) does not need to be calculated since argmaxW is the maximum of the equation
for all possible word sequences W and P (Y) does not depend on W . P (W) is
calculated in the language model. P (Y |W) is provided in the acoustic model and the
pronunciation dictionary, and argmaxW is represented during the search (decoding).

Our work focuses on the language model. We investigate the benefit from ad-
ditional information in the language model for recognizing utterances containing
code-switching.

2.2.1 Language Model

There are two common types of language models: Statistical language models and
grammars. Grammars are useful for very limited domains. They consists of a set of
rules and a vocabulary. More about grammars can be found in [12]. Since we are

6 2. Fundamentals

working with utterances from an unrestricted domain, we are working with statistical
language models.
The statistical language model assigns the probability P (W) to a word sequence.
For example, in English the word sequence: ”Dear ladies and gentlemen” is much
more likely than ”Deer lay dee’s sand dental man” but the sound of these two word
sequences is very similar. When calculating

P (W) =
k∏

i=1

P (wi| wi−1...w2 w1) (2.2)

for a large vocabulary v, there is a huge number of possible |v|k word sequences.
Therefore, the n-gram technique is used:

P (W)n−gram =
k∏

i=1

P (wi| wi−1... wi−n+1) (2.3)

where often n = 3 [12].

The frequency of the occurrence of a word P (wi|history) can be estimated by the
count C(wi|history) divided by the count of the history. For a 4-gram language
model the probability of a word depends on its three preceding words and can be
estimated as follows:

P (wi|wi−3wi−2wi−1) =
C(wi−3wi−2wi−1wi)

C(wi−3wi−2wi−1)
(2.4)

For building an n-gram language model, it is best to have a huge training corpus
with millions of words available. However, for code-switching data we only have a
very small amount of data available because code-switching is frequently used in
(spontaneous) speech but not in (formal) writing.

A key problem in n-gram modeling is data sparseness. Many possible word com-
binations are not observed in the training. Given we have an unobserved word
combination in the test data, the probability of a string W containing an unob-
served word combination is 0. This is obviously an underestimation. If P (W) = 0,
the string is not considered as a possible transcription, although it may be the accu-
rate transcription. The goal of n-gram smoothing is to assign non-zero probabilities
to all word n-grams that did not appear in the training data. Smoothing adjusts
probabilities of word sequences to get a more robust estimation for unseen data. It
tends to improve the accuracy of the model as a whole. There are various smooth-
ing techniques described in [12]. Backoff smoothing is a technique, where if a higher
order n-gram w|wi−n+1 · · ·wi−2wi−1 has a non-zero probability, this distribution is
used. If the count of the higher order n-gram is zero, we backoff to the lower or-
der n-gram w|wi−n+2 · · ·wi−2wi−1. Kneser-Ney Smoothing is a popular smoothing
method which we use in our experiments.

Important language model measures are the perplexity and the out-of-vocabulary
(OOV) rate. The perplexity is the average branching factor of an n-gram language
model. On a given domain and vocabulary a language model with a low perplexity
should be more suitable than a language model with a higher perplexity [13]. The

2.2. Automatic Speech Recognition Basics 7

OOV is the frequency of (word) tokens inside the test corpus, which are not in the
vocabulary of the language model. These words are mapped to an unknown word
and get an equal probability. A high OOV rate may lead to poor speech recognition
results as OOV words can at best be estimated as unknown words by the language.
This will definitely lead to a recognition error for the current word and might lead
to consecutive errors due to a wrong context.

It is possible to combine different language models or text corpora. If more than
one corpus is available, these corpora normally do not have an equal importance
for the speech data to recognize. In such cases language model interpolation is a
common approach [14]. The simplest way of language model combination is the
linear interpolation. Provided we have the language model or text corpus a and the
language model or text corpus b, then the probability Pr(., .) of a word wq given
a history hq for the interpolated language model can be calculated in the following
way:

Pr(wq|hq) = (1− λ)Pra(wq|hq) + λPrb(wq|hq), 0 ≤ λ ≤ 1 (2.5)

where λ is the interpolation coefficient. This coefficient can be calculated automati-
cally by minimizing the perplexity on a development set as for example implemented
in the SRI Language Model Toolkit [15].

2.2.2 Mixed Error Rate

The performance of a speech recognition system is measured by the word error rate
(WER). The WER is calculated in the following way:

WER =
INS +DEL+ SUB

N
· 100% (2.6)

where INS is the number of word insertions, DEL the number of word deletions,
SUB the number of word substitutions and N the number of words in the reference.
Note that for the WER the best alignment should always be used. For example, if we
have the reference: ”Multilingual speech recognition is very interesting”. Our speech
recognizer gives the transcription ”‘Multi label beach recognition is very interesting”’
the WER ist 1+0+2

6
· 100% = 50%. The WER is an important indicator how good a

speech recognizer is.

For English data normally the WER is estimated, while for Chinese data the char-
acter error rate (CER) is standard, since Chinese is lacking an explicit word seg-
mentation. Because we have mixed Chinese-English data, we evaluate the WER on
the English part and the CER on the Chinese part. For this work, we refer to this
error rate on Chinese characters and English words as mixed error rate (MER). The
MER is calculated in the same way as the WER, but for the Chinese part char-
acters are considered instead of words. We calculate the mixed error rate for our
Chinese-English data in the following way:

MER =
INSm +DELm + SUBm

Nm

· 100% (2.7)

where

8 2. Fundamentals

• INSm is the number of English word and Chinese character insertions,

• DELm is the number of English word and Chinese character deletions,

• SUBm is the number of English word and Chinese character substitutions,

• Nm is the number of English words and Chinese characters in the reference.

2.3 Related Work

Multilingual speech recognizers are able to process multiple languages and can be
created by merging components of monolingual speech recognizers. In this work, we
define a speech recognizer as multilingual if at least the acoustic model, the language
model or pronunciation dictionary is used and trained from more than one language
[16].

For recognizing code-switched utterances, we need to be able to handle speech in all
languages involved in code-switching.

A common approach to handle inter-sentential code-switching is described in [2]. It
uses finite state grammars and works in the following way:

1. Define a distinct vocabulary Σi for every language i we consider.

2. Train a finite state acceptor Gi which accepts Σ∗
i .

3. The multilingual language model is the finite state union:
⋃M

i=1 Gi.

A regular language is a formal languages, which can be accepted by a finite state
machine. Regular languages are closed on union operations. Therefore, the result
of
⋃M

i=1 Gi is an n-gram language model. This approach has the advantage that
powerful algorithms for finite state machines can be applied to handle the n-gram
models.

Intra-sentential code-switching is very common in informal settings for multilingual
speakers. Two techniques have been investigated for modeling such multilingual
speech:

• Merge the language model training texts with possible tagging of words, which
have the same spelling in more than one of the considered languages, to be able
to distinguish these words and build a language model of the merged training
texts. For example in German the word “beamer” stands for a data projector,
while in English “beamer” is slang for a car of the company BWM. Therefore
the word “beamer” needs to be tagged, if we would be interested in English
and German.

• Merge the vocabulary of multiple languages but estimate an n-gram language
models for each individual language. These language models are interpolated
afterwards. Word entries of one language are included in the language models
of other languages with zero counts and received a small backoff probability.
In this approach, all words have non-zero probabilities, which enables the
approach to handle intra-sentential code-switching.

2.3. Related Work 9

The performance on intra-sentential code-switching tends to be worse than on inter-
sentential code-switching. The word data merging approach tends to be significantly
worse than model interpolation [2].

Lyu and Lyu [17] proposed a two stage framework for speech recognition on Mandarin-
Taiwanese code-switching speech data:

1. LVCSR-based language identification.

2. Language dependent speech recognition.

They use cues to distinguish Mandarin and Taiwanese in the language identification
component. Afterwards they apply different syllables as phonetic cues, tones as
prosodic cues, and rhythm cues as well as the variation of the duration of a series of
sound. To connect acoustic model, duration model and language model, a maximum
a posteriori decision rule is used. The authors are able to reduce the error rate by
34.5% for language identification and the syllable error rate by 17.7% (from 44.7%
to 36.8%) for automatic speech recognition compared to their baseline.

The following papers are related to our work, but were not published at the be-
ginning of our work. Therefore experiments described in these papers could not be
considered for our experimental setup.

Yeh et al. proposed a paper about an integrated framework for transcribing Mandarin-
English code-mixed lectures with improved acoustic and language modeling [18].
Their speech data is only from a single speaker. Yeh et al. use class based n-grams
for statistical language modeling. They cluster words into classes based upon part-
of-speech features and a perplexity criterion. Additionally, the authors use random
forest language models and language model adaptation. Yeh et al. achieve the high-
est improvement of 1.46% relative using class-based language models and part of
speech tags.

Cao et al. proposed a paper about semantic-based language modeling for Cantonese-
English code-mixing speech recognition [19]. To deal with the lack of training data
for code-mixed language modeling, the authors use a translation based mapping
scheme. Embedded English word are clustered into about 200 semantics classes
differentiated with the word meaning, part-of-speech and syntactic function. The
performance is evaluated on a Cantonese-English read speech corpus. Similar to
our MER calculation the error rate is in terms of CER for Cantonese and in terms
of WER for English. Cao et al. obtain an overall error rate of 26.3%, while their
baseline 3-gram language model achieved an error rate of 29.5%. In particular, they
achieve an improvement for English words where the error rate is reduced from
51.4% to 36.1%.

Tsai et al. studied on Hakka and mixed Hakka-Mandarin speech recognition [20].
They apply different methods to incorporate part-of-speech and word translation
information into the language model. The authors use a class-based language model
to add part-of-speech information into the language model.

10 2. Fundamentals

Bhuvanagiri et al. proposed an approach to mixed language automatic speech recog-
nition [21]. The authors claim to achieved a good recognition performance with
applying a language model, which was built on a small mixed speech corpus, and
constructing a pronunciation dictionary for mixed language words.

2.4 Evaluation Measures for Classification

In our experiments to predict language and code-switch points, we utilize classifica-
tion. We describe general classification measure in this section.

We define the (desired) class, we are interested in, as the positive class. Assuming
we have a two-class problem, there are two possible predictions of the classifier and
two possible results [22]. Given we have the classes 1 and 0, where class 1 is the
positive class, there are four possible combinations [22]:

• True positive (TP): The predicted class and the actual class are the positive
class 1.

• True negative (TN): The predicted class and the actual class are the nega-
tive class 0.

• False positive (FP): The predicted class is the positive class 1, while the
actual class is 0.

• False negative (FN): The predicted class is the negative class 0, while the
actual class is 1.

An example for classification may be the evaluation of the mood of a person which
we can classify into positive happy and negative unhappy. If we predict the person
to be happy and the person actually is happy we have a TP. Given we correctly
predict a person to be unhappy this is a TN. If the prediction is that the person is
happy while the person is actually unhappy we create a FP. Likewise a prediction
for a person to be unhappy while the person actually is happy is a FN.

From true positives, true negatives, false positives and false negatives we can derive
the measures recall, precision, F-measure, and success rate for evaluation [22]:

• Recall: Recall = TP
TP+FN

• Precision: Precision = TP
TP+FP

• F-measure: F −measure = 2·recall·precision
recall+precision

• Success rate: Success rate = TP+TN
TP+TN+FP+FN

As in WEKA [23] we also refer to the success rate as the correct instances.

3. Database and Tools

3.1 Mandarin-English Code-Switching Database

Speech data which contains code-switching is hard to find. We applied English-
Mandarin data, which was recorded at the Human Language Technology Center
at the Hong Kong University of Technology. The data is described in detail in
[24]. The speech data is conversational meeting data and contains a large variety of
topics including university administration, history and politics. The total length of
the audio data is 163 minutes. While the speech data consists of different speakers,
there is one dominant (female) speaker making up for 159 minutes of data. Table
3.1 gives a break down.

3.1.1 Database Split

For training, tuning and evaluating our ASR systems, we split the database into the
following sets:

• Training set: The training set is used to train our models.

• Development set: The development set is applied to set suitable ASR pa-
rameters, N-best rescoring parameters, and to select classifiers for our predic-
tion experiments.

• Evaluation (test) set: The evaluation (test) set is used for the final evalua-
tion.

The original distribution of the complete data into training set, development set,
and evaluation set by Burgmer [24] and others was processed session-based, where
a whole session or part of a session founds the development and evaluation set.
We evaluated this data division. Table 3.1 displays utterances (Utts) and their
distribution into pure Chinese (CH) utterances, pure English (EN) utterances and
CS utterances in the training set, development (dev.) set and evaluation (eval.) set.
Table 3.2 contains CS points, perplexity and OOV-rate on a 4-gram language model

12 3. Database and Tools

Data Set Total Utts CH Utts EN Utts CS Utts % of CS Utts

Training 1017 428 124 465 46%
Dev. 267 146 28 93 35%
Eval. 103 43 27 33 32%

Table 3.1: Utterances(Utts) and their proportion of pure CH utterances, pure EN
utterances and CS utterances by Burgmer [24].

Data Set CS Points CS Points per CS Utt Perplexity OOV

Training 1370 2.95 27.6 0.00%
Development 192 2.06 436.4 16.17%
Evaluation 98 2.97 519.3 16.76%

Table 3.2: CS points, perplexity and OOV-rate on a 4-gram language model built
exclusively on the training set in the original distribution by Burgmer [24].

built exclusively on the training set in the different sets in the original distribution
by Burgmer and others. While it is uncommon to use 4-gram language models for
small data sets, experiments described in section 4.3 indicate that we can achieve a
better performance applying 4-gram language models instead of 3-grams. It can be
observed that the OOV rate is very high and that the development set has more than
twice as many utterances than the evaluation set. The high OOV can be explained
by the distribution of the utterances in different sets. The original distribution
was split session based. The topics in the different sessions are to a certain extend
different. Also the variation of the size of development and evaluation set can be
explained due to the session-based split. Due to these problems, we split the data
differently:
To reduce the OOV rate, we applied a different approach for splitting the whole
speech database into the training, development and evaluation set. We consider all
utterances in chronological order and for every group of ten utterances. We assign
eight utterances to the training set, one to the development set and one to the
evaluation set. Consequently, each set gets a part of each session and we reach the
standard 80% , 10% , 10% distribution for training, development and evaluation set.
To compare with the original statistics, we obtain the statistics shown in Table 3.3
and Table 3.4 for our new data divisions.

Data Set Total Utts CH Utts EN Utts CS Utts % of CS Utts

Training 1111 492 141 478 43%
Dev. 138 62 20 56 41%
Eval. 138 63 18 57 41%

Table 3.3: Utterances (Utts) and their distribution into pure CH utterances, pure
EN utterances and CS utterances set in our distribution.

3.1. Mandarin-English Code-Switching Database 13

Data Set CS Points CS Points per CS Utt Perplexity OOV

Training 1388 2.90 28.7 0.00%
Development 128 2.29 384.2 7.94%
Evaluation 144 2.53 405.7 8.20%

Table 3.4: CS points, perplexity and OOV-rate on a 4-gram language model built
exclusively on the training set in our distribution.

Data Set Total Utts CH Utts EN Utts CS Utts % of CS Utts

Training 1111 492 141 478 43%
Dev. (NF) 114 54 17 43 38%
Eval. (NF) 116 58 16 42 36%

Table 3.5: Utterances (Utts) and their distribution into pure CH utterances, pure
EN utterances and CS utterances in our distribution without fillers (NF).

Table 3.3 and 3.4 show that our new distributions reduce the OOV rate by more
than 50% relative, while reducing the perplexity of the development and evaluation
set on the language model built on the training set. Also, the proportions of utter-
ances and CS are more balanced. This indicates that development set and evaluation
set represent the training data better. Therefore it is more suitable for our speech
recognition experiments.
Another issue with the data is that our utterances contain fillers. Fillers can be
described as (non-)words and are difficult to attribute to any language [24]. The
utterances with fillers may be of poor quality. We generated a new database to
investigate the effect of fillers by comparing this database with our previous one.
The focus of our work was to investigate CS in clear speech and the filler problem
is a different topic. Therefore we removed the utterances containing fillers from
our development and evaluation set. The utterances with fillers may still be use-
ful for speaker adaptation, which we use our training set for in speech recognition
experiments, while the utterances with fillers tend to be difficult to recognize. The
statistics of the new database are shown in Table 3.5 and 3.6. Table 3.6 shows the
code-switch points, the average amount of code-switches per utterance containing
code-switches, and the perplexity and OOV on a 4-gram language model exclusively
built on the training data. Please note that the average amount of words per ut-
terance is 13.4 on the training set, 13.6 on the development set and 11.8 on the
evaluation set respectively. The training set contains 14983 word tokens, the devel-
opment set 1546 word tokens and the evaluation set 1364 word tokens respectively.
Removing utterances with fillers leads to a small reduction in OOV rate and to a
13.5% and 16.7% reduction in perplexity on the development and evaluation set.
Due to these improvements, we use our data distribution without fillers in devel-
opment and evaluation set for our prediction and speech recognition experiments,
described in sections 4.2 and 4.5.

14 3. Database and Tools

Data Set CS Points CS Points per CS Utt Perplexity OOV

Training 1388 2.90 28.7 0.00%
Dev. (no filler) 94 2.18 332.0 7.76%
Eval. (no filler) 103 2.45 337.9 8.14%

Table 3.6: Code-switch (CS) points, perplexity and OOV-rate on a 4-gram language
model built exclusively on the training set in our distribution without fillers.

3.2 Waikato Environment for Knowledge Analy-

sis

The Waikato Environment for Knowledge Analysis (WEKA) [23] was designed as a
toolbox for machine learning and data mining. WEKA provides several graphical
user interfaces (GUI), of which we only used the WEKA Explorer GUI. The WEKA
Explorer GUI provides the following functionalities:

• Data can be loaded and converted with preprocessing tools.

• Classification and regression can be done with a wide variety of implemented
algorithms.

• Clustering methods and algorithms are provided.

• Methods for associated rule mining are provided.

• WEKA provides attribute selection tools which are utilized to figure out which
attributes are most useful.

• Data visualization is implemented.

WEKA is available for non-commercial use for free under the Gnu general public
license (GPL).

3.3 SRI Language Modeling Toolkit

The SRI Language Modeling Toolkit (SRILM) [15] is a popular tool for statistical
language modeling. It consists of a collection of C++ libaries, programs and helper
scripts to support the creation and evaluation of language models.
SRILM was designed with the following goals:

• Reliable and efficient implementation of recent LM algorithms to support sys-
tem development, in particular for speech recognition.

• Flexibility and the possibly to extend SRILM was a key goal to support re-
search for new language model types.

• A rational and clean design was intended with providing an application pro-
gramming interface and a toolbox for commands.

3.4. Janus Recognition Toolkit 15

SRILM provides common language model operations for building and evaluating
language models. Various types of language model types are supported. Recent
versions support factored language models [3], which we apply for our experiments.
Also related tasks to language modeling are supported, like N-best lists and word
lattices.
SRILM is available for free for noncommercial use under an Open Source Community
License.

3.4 Janus Recognition Toolkit

The Janus Recognition Toolkit (JRTK) [25] is a toolkit for automatic speech recog-
nition. JRTK was developed by the Interactive Systems Laboratories at Carnegie
Mellon University, USA and University of Karlsruhe, Germany. The toolkit imple-
ments an object-oriented approach where tcl scripts based environments allow the
construction of different recognizers. JRTK is a programmable shell with transpar-
ent and efficient objects. JRTK provides objects for a wide variety of recognition
approaches.

3.5 Part-of-Speech Tagger

Part-of-speech (POS) tagging is the process of aligning words to word types. The
word itself and the context is considered. POS taggers perform POS tagging. For
our work we apply Chinese and English Stanford Loglinear POS taggers [26] [27].
The utilized taggers are maximum-entropy based. The used English POS tagger
has an accuracy of 96.97% on English Wall Street Journal 19-21 data, where 89.03%
of unknown words are tagged correctly. The utilized Chinese tagger achieves an
accuracy of 93.60% on a combination of Chinese and Hong Kong texts, where 81.61%
of unknown words are tagged correctly [28].

16 3. Database and Tools

4. Experiments

4.1 Part-of-Speech Tagging

We have Chinese-English text data containing intra-sentential code-switching (CS).
There are monolingual POS taggers available for different languages, also for Man-
darin and English. A bilingual Mandarin-English POS tagger would be most suitable
for our case, since it can internally consider language switches and provide accurate
tags for Mandarin and English. However, to our best knowledge only monolingual
taggers exists so far. Therefore, we applied a language islands based approach by
Burgmer [24] which works in the following way:

• Determine the matrix language for each utterance.

• Search the utterance for language islands, consisting of at least three consec-
utive words of the embedded language in the current utterance.

• Apply the POS tagger in the matrix language for all words, which are not
language islands as defined above.

• Utilize the POS tagger in the embedded language for language islands.

• Less than three consecutive words of the embedded language are processed by
the POS tagger in the matrix language of the current utterance.

This language island approach limits the amount of consecutive foreign words, a
tagger tags, while maintaining context information as long as the number of consec-
utive words in the embedded language are less than three. It is possible to change
the count of consecutive words to be considered a language island. For our exper-
iments, a change of this parameter did not provide improvements with regards to
MER applying factored language models described in section 4.5.

We apply the Stanford Log-linear Part-Of-Speech Taggers [26][27] for Mandarin and
English. The Mandarin POS tagger uses the Penn Chinese Treebank tag set [30],
while the English POS tagger uses the English Penn Treebank tag set [29]. The

18 4. Experiments

Figure 4.1: The English PENN Treebank tag set [29]

Figure 4.2: The Chinese PENN Treebank tag set [30]

4.1. Part-of-Speech Tagging 19

POS tag set of the Penn Chinese Treebank tag set and the Penn English Treebank
tag set are displayed in Figure 4.1 and 4.2.

With the language island approach, the language of a word and the tagger that tags
the word may differ. Therefore, we consider it as important that any word may get
a suitable POS tag regardless of its language and the language of the POS tagger,
which tagged the word. Consequently, we unified the given Penn English Treebank
tag set and the Penn Chinese Treebank tag set. The unified set was derived based
upon:

• A comparison of the Chinese Treebank tag set and the Penn English Treebank
tag set from the Penn Chinese Treebank authors [30].

• A unified Chinese English Penn Treebank tag set shown in Burgmer’s Diploma
thesis [24].

Our unified tag set is displayed in Table 4.1. It shows the alignment of different
English and Chinese POS tags to unified POS tags. For example if we consider the
POS tags ”adverb” in our unified set: Any POS tag, which is one of the English
POS tags ”RB” ”RBR” ”RBS” and ”WRB” or the Chinese POS tag ”AD”, will be
mapped to a single POS tag, which tags the corresponding word as an adverb. Our
unified tag set differs from Burgmer’s unified tag set in a way that we do not use a
designated tag for English modal verbs, but align it with other verbs, since it is done
so by the Chinese PENN Treebank authors [30]. Furthermore we added tags, which
appeared in our data, but were missing in Burgmer’s unified tag set [24]. These
were the tags ”OD”, ”AS”, ”ETC”, ”MSP”, ”RP”, ”LC”, ”ON”, ”SYM”, ”LS”, ”EX”,
and ”POS”.

20 4. Experiments

POS English POS Tags Chinese POS Tags
Verb VB VBD VBG VBN VBP VBZ MD VA VE VC VV
Noun NN NNS NNP NNPS NN NR NT
Adjective JJ JJR JJS JJ
Adverb RB RBR RBS WRB AD
Pronoun PRP PRP$ PP$ WP WP$ PN
Conjunction CC CC
Number CD CD OD
Determiner DT WDT PDT DT
Preposition IN TO P BA LB SB CS
Interjection UH IJ
De and zh particle - DEC DEG DER DEV
Final particle - SP
Measure word - M
Other Ch. particle - AS ETC MSP
Other En. particle RP -
Localizer - LC
Sound word - ON
Punctuation : ; . PU
Unknown UNK FW UNK FW
Symbol SYM LS -
Existential there EX -
Possessive ending POS -

Table 4.1: Our unified tag set based upon [30] and [24].

4.2. Text Based Prediction of LID and Code-Switch Points 21

4.2 Text Based Prediction of LID and Code-Switch

Points

Text based of language identification (LID) in a text containing CS, aims to predict
the language of the current word based upon features associated to the past context.
We also predict the code-switch points itself. Our work on text based prediction was
mainly done at the Hong Kong University of Science and Technology.

4.2.1 Motivation of our Prediction Experiments

The motivation of our prediction experiments is to investigate the use of our ap-
plied features for multilingual language modeling with utterances containing intra-
sentential CS. The challenge of recognizing speech with CS are the switches of the
language. In particular the statistical estimation of n-grams in utterances containing
CS is poor for common, word-based n-gram language models. We examine if we can
benefit from adding language identification and POS tags as information sources.

4.2.2 Related Work

Solorio and Liu [31] proposed an approach to predict code-switch points based on
Spanish-English transcriptions. They also published a paper about part-of-speech
tagging of code-switched text [32].

Solorio’s and Liu’s paper about POS tagging inspired us to predict the language
of words text based, since we will later predict code-switch points based upon the
prediction of the language of words. The authors work on English-Spanish CS
data of 39 minutes length. They achieve the best result applying a machine learning
approach with features derived from English and Spanish POS taggers. The authors
used various classifier of the WEKA [23] data mining library. They achieve the
best result with the support vector machine (SVM) classifier of WEKA where they
reached a mean POS tagging accuracy of 93.48%.

The paper about predicting code-switch points [31] is actually the foundation of our
text based prediction of code-switch points. Solorio and Liu use a set of features
related to the history of words, but not the current word. They evaluated there ex-
periments on a recorded conversation of three bilingual English-Spanish speakers of
39 minutes length. The authors applied the Naive Bayes and Value Feature Interval
classifier of the WEKA [23] data mining software. The best result they achieved for
the prediction of code-switch points is an F-measure of 0.28 with a precision of 0.19
and a recall of 0.53 applying the Naive Bayes classifier. This result is not a high
performance. The authors point out that it would be unrealistic to achieve a high
performance for this task. For example at a position, where the machine learning
approach predicts a code-switch point and the reference speaker made the decision
not to code-switch, it is not implied that this particular position is unsuitable as
a code-switch point. Likewise, if the classifier overlooks a code-switch point in the
reference, the result may be grammatically and naturally sound. Therefore, Solorio
and Liu used human evaluators to evaluate automatically generated CS sentences.
On a score of 1 (worst) to 5 (best) human evaluators rated human generated CS with
an average score of 3.64, while CS sentences generated with the naive bayes classifier
were rated with an average score of 3.33. Randomly generated CS sentences were

22 4. Experiments

rated with an average score of 2.68. The authors claim their improvement over ran-
domly generated CS sentences to be significant according to a paired t-test. Solorio
and Liu suggest the prediction of code-switch points to be used for multilingual
language models, which we actually do in our factored language model experiments.

4.2.3 Predicting Language

As described earlier our goal for this section is to investigate the use of additional
features for multilingual language modeling for utterances containing CS. We inves-
tigate POS tags and the language of a word as features. For predicting the language
of words, we apply the following features:

• POS tags of up to six preceding words in the current utterance.

• Language (identification) of up to six previous words in the current utterance.

• The number of previous words in the current utterance.

We derived all features from our training text data. In case there are less than six
words before the current word in the utterance some feature have missing values.
The number of preceding words in the utterance is used, as it is the only available
feature for the starting words of any utterance. For our features, it was important
that all features can be generated automatically without the need of a manual human
input to allow a run in a larger framework. We obtain POS tag features applying
the Stanford Log-linear Part-Of-Speech Taggers [27][26] for Mandarin and English
and map them to our unified tag set, described in Section 4.1. The language of
individual words was obtained rule-based, by considering the Unicode number of
characters of each word. The number of preceding words in the current utterance
was created with a counter. The POS tag may be incorrect, since POS taggers
may make errors, while the rule-based language identification and the number of
preceding words should always be correct.

It is important to point out that we did not use any features derived from the current
word for several reason:

• The current word along with a limited history is normally used in standard n-
gram language models. We intend to investigate the use of additional features.

• Since we are working on Chinese and English which have different scripts, the
language of a word can easily be obtained rule-based without error. Using the
(rule-based) language identification of the current word as a feature, would
be contrary to our motivation for this section. We would not gain any infor-
mation about factors associated to past words, which we need for designing
multilingual language models.

Given our set of 13 LID, POS and number of preceding words features, we utilized
machine learning and WEKA [23] to obtain the predicted language of our current
word and compare this class to its actual class value. We selected classifiers based
upon popularity, variety and performance from WEKA [23]:

4.2. Text Based Prediction of LID and Code-Switch Points 23

Figure 4.3: Language prediction results on our development set.

Figure 4.4: Language prediction results on our evaluation set.

• J48: J48 is an modified version of R. Quinlan’s C4.5 [33] decision tree classifier.
We activated reduced error pruning for our experiments.

• Logistics: The (linear) logistics regression classifier [34] creates and applies a
multinomial logistic regression model with a ridge estimator.

• Logit Boost: Logit Boost [35] is a classifier for additive logistic regression.
A regression scheme is utilized as the base learner.

• Naive Bayes: The Naive Bayes [36] classifier.

We investigated the use of WEKA’s support vector machine (SVM) classifier (LIB-
SVM) [37]. However, this classifier does not support missing class values, and re-
placing the missing value with a default NULL value had a negative effect on the
performance of other classifier. We used WEKA’s standard value for for missing
classes “?”. Further the J48 classifier and the Logistics classifier performed better
than the SVM classifier even with applying a default NULL value.

24 4. Experiments

Classifier Set F-Measure Precision Recall Correct Instances
J48 Dev. 0.926 0.929 0.928 92.8%
Logistics Dev. 0.918 0.920 0.920 92.0%
Naive Bayes Dev. 0.906 0.907 0.908 90.8%
Logit Boost Dev. 0.922 0.923 0.924 92.4%
J48 Eval. 0.903 0.906 0.908 90.8%
Logistics Eval. 0.899 0.901 0.903 90.3%
Naive Bayes Eval. 0.890 0.890 0.894 89.4%
Logit Boost Eval. 0.901 0.902 0.905 90.5%

Table 4.2: Results of predicted language using LID, POS tags and the count of
previous words as features. The results are the weighted average of both classes.

Classifier Set F CH F EN Pr CH Pr EN Rec CH Rec EN
J48 Dev. 0.953 0.847 0.926 0.936 0.982 0.773
Logistics Dev. 0.948 0.831 0.923 0.913 0.975 0.763
Naive Bayes Dev. 0.940 0.807 0.917 0.876 0.963 0.748
Logit Boost Dev. 0.950 0.840 0.927 0.912 0.974 0.778
J48 Eval. 0.942 0.769 0.915 0.875 0.972 0.686
Logistics Eval. 0.939 0.760 0.913 0.857 0.967 0.683
Naive Bayes Eval. 0.933 0.739 0.909 0.823 0.958 0.670
Logit Boost Eval. 0.940 0.764 0.915 0.858 0.967 0.690

Table 4.3: Results of predicted language for Mandarin and English. We display the
F-measure (F), precision (Pr), and recall (Rec).

4.2.4 Evaluation of Predicted Language Identification

We utilized WEKA to evaluate our prediction of language with the features we
described in the previous subsection. We evaluate our results with the correct in-
stance, F-Measure, precision and recall. Table 4.2 and figures 4.3 and 4.4 show the
correct instances, weighted average F-measure, precision and recall of our predicted
language identification. Calculating the weighted average for both classes, recall
and success rate are equal. The J48 classifier performs best for this experiment and
we can achieve an F-measure of 0.926 on the development set and of 0.903 on the
evaluation set. Utilizing the J48 classifier, 92.8% of our instances on our develop-
ment set were classified correctly, while 90.8% of our instances on the evaluation set
were classified correctly. We have two possible classes, namely the languages En-
glish and Mandarin. Mandarin is our matrix language and 74.3% of our instances
on the development set and 77.6% of our instances on the evaluation set belong to
the Mandarin class. Compared to a baseline where we classify every instance as
Mandarin we consider our improvements to 92.8% and 90.8% to be significant.

We investigated precision, recall and the corresponding F-measure not only for the
weighted average which is shown in Table 4.2 but also for the individual classes
Mandarin and English which we display in Table 4.3. The language specific results
show that the performance of the matrix language Mandarin is better than our
results on the embedded language English. The difference in the performance is
particularly in the recall, and due to its calculation also in the F-measure. With
the best performing classifier regarding the recall for English which is the Logit

4.2. Text Based Prediction of LID and Code-Switch Points 25

Boost classifier, we achieve a recall of 0.778 on the development set and 0.690 on
the evaluation set. While this is not a poor result, there is a relevant difference
to the average recall result. These difference indicates that our predicted language
identification rather tends to predict actually English words as Chinese than any
other error. Given that Mandarin is our matrix language, it is reasonable that
it performs better than English. However, it is interesting that our precision for
English is higher than our recall, while the weighted average (AVG) precision and
recall are very close. It should be considered that the baseline, predicting every word
in the Mandarin matrix language, can only result in a recall of 0.000 for the English
class. Due to the fact that, for our data, the majority of words are in Mandarin, the
difference between the English recall and the Mandarin recall is reasonable.

4.2.5 Features for Predicting the Language of a Word

In our previous experiment for predicting the language, we apply the actual lan-
guage of previous words as features (among others). It may be argued that applying
the actual language of past words as a feature for predicting the language of the
current word, may be problematic. Following this argument the predicted language
of preceding words should be used and not the actual one. It is reasonable that
predicted language features can be omitted, because the predicted classification is
exclusively based on features, which we have at our disposal. These features are
the POS tags and the count of preceding words in the current utterance. If we
intend to predict the language of the preceding six words and the current word,
these language features would be derived from the POS tags, associated with twelve
preceding words and seven features indicating the number of preceding words within
the current utterances. If we have the number of previous words feature correspond-
ing to the current word, the previous word features corresponding to past words can
be derived by decrements. Furthermore it is reasonable to assume that POS tag
features, corresponding to distant words, have only limited relevance for the current
worst. Therefore we should only lose minor information in omitting predicted lan-
guage features, as the additional features, we would apply to predict the language
of preceding words, are only of limited relevance. Additionally, applying predicted
language features of preceding words, would increase runtime by making it necessary
to perform multiple classification runs. For these reasons, we estimate prediction
experiments with omitted language features corresponding to previous words, as an
adequate replacement to using predicted language features associated to previous
words. For our work we consider the argument of applying predicted language fea-
tures instead of actual language features, only of limited relevance. The motivation
for the prediction experiments is to investigate the use of different features to be
applied in multilingual language modeling for utterances with intra-sentential CS.
Therefore, we are interested in obtaining information about the use of LID and POS
tags as features. Performing prediction of language with exclusively utilizing POS
tags of previous words and the count of previous words in the current utterance as
features may help us evaluating the use of language and POS tag features. There-
fore, we conduct our experiment of predicting the language of a word described in
the previous section also with omitted language features of preceding words.

26 4. Experiments

4.2.6 Predicting Language Identification with Omitted Lan-
guage Identification Features

We performed our experiment for predicting the language of a word with omitted
language features as described in the previous subsection. Except from omitting
the language features to predict the language of a word, the experimental setup
remains unchanged. Table 4.4 shows the result of this experiment in regards to
F-measure, precision, recall and correct instances. It can be observed that the
percentage of our correct instances drops from 92.8% on the development set and
90.8% on the evaluation set to 79.7% and 81.7% respectively always considering
the best performing classifier. Note that the fraction of Chinese words is 74.3% on
the development set and 77.6% on the evalution set. Also the F-measure decreases
from 0.93 on the development set and 0.90 on the evaluations set to 0.76 and 0.78,
respectively. We also evaluate the class specific results regarding precision, recall
and F-measure, shown in Table 4.5. It can be derived that in addition to the overall
performance loss, the recall on English words seems to be rather low comparing
to the other measures. 69.5% of our English words are predicted as Chinese on
our development set and 71.9% on the evaluation set, respectively, considering the
best performing recognizer for the English recall. We achieve a better performance
on the evaluation set than on the development set. This may be connected to the
fact that the share of words in our matrix language (Mandarin) is higher on the
evaluation set than on our development set. However, in our experiments with
utilizing language features, we achieved a better performance on the development
set than on the evaluation set. Comparing the classifiers, we realize that unlike in
our experiments, where we included the actual language of preceeding words as a
feature where the J48 classifier [33] performs best, the Logistics classifier [34] and the
Naive Bayes classifier [36] provide the best performance. Our goal is not to compare
different classifiers, but to apply classifiers which provide reasonable results. Our
key observations of this experiment without utilizing the actual language are the
following:

• Omitting the language identification of preceding words from the features re-
sults in a significant performance loss in particular to the recall of English
words.

• Compared to the baseline, where we consider every word as Chinese, we still
achieve an improvement.

From this observations, we conclude that the actual (accurate) language identifica-
tion of preceding words in the current utterance is an important feature for predicting
the language identification of the current word. Note that due to our unified POS
tags, it is in general not possible to obtain the language identification of a word
from its POS tag, unless the POS tag belongs to a class, where only tags from one
language were mapped to. POS tags in every class of Table 4.1, where either no
English or no Chinese POS tags were associated to, directly indicate the language
of its corresponding word. For example words tagged as a measure word can only
be Chinese, while for example nouns can belong to both languages.

Figures 4.5 and 4.6 show the performance of our language identification experiments
on development set and evaluation set. We compare our results with a baseline

4.2. Text Based Prediction of LID and Code-Switch Points 27

Figure 4.5: F-measure, precision and recall of our language identification experi-
ments on our development set.

Figure 4.6: F-measure, precision and recall of our language identification experi-
ments on our evaluation set.

28 4. Experiments

Classifier Set F-Measure Precision Recall Correct Instances
J48 Dev. 0.715 0.750 0.768 76.8%
Logistics Dev. 0.762 0.792 0.797 79.7%
Naive Bayes Dev. 0.761 0.787 0.795 79.5%
Logit Boost Dev. 0.696 0.733 0.759 75.9%
J48 Eval. 0.743 0.762 0.791 79.1%
Logistics Eval. 0.779 0.810 0.817 81.7%
Naive Bayes Eval. 0.784 0.807 0.817 81.7%
Logit Boost Eval. 0.743 0.768 0.793 79.3%

Table 4.4: Results of predicted language identification using POS tags and the count
of previous words as features. The results are the weighted average of both classes.

Classifier Set F CH F EN Pr CH Pr EN Rec CH Rec EN
J48 Dev. 0.862 0.292 0.775 0.679 0.970 0.186
Logistics Dev. 0.876 0.429 0.800 0.771 0.970 0.297
Naive Bayes Dev. 0.875 0.433 0.801 0.747 0.964 0.305
Logit Boost Dev. 0.857 0.231 0.766 0.636 0.972 0.141
J48 Eval. 0.878 0.275 0.803 0.621 0.969 0.176
Logistics Eval. 0.892 0.387 0.820 0.775 0.978 0.258
Naive Bayes Eval. 0.892 0.409 0.824 0.748 0.973 0.281
Logit Boost Eval. 0.879 0.273 0.803 0.646 0.973 0.173

Table 4.5: Results of predicted language identification for Mandarin and English.
We display the F-measure (F), precision (Pr), and recall (Rec).

where we predict every word as Chinese. With both our experiments, we achieve a
significant improvement considering the weighted average for F-measure, precision
and recall.

4.2.7 From Predicting Language Identification to Predict-
ing Code-Switch Points

As we work with English-Mandarin data, containing intra-sentential CS, predicting
code-switch points is particularly useful. Since our data is in Mandarin and English
the possible code-switch points can either be from Mandarin to English or from En-
glish to Mandarin. For this experiment, we do not differentiate between these two
types of code-switches since both are code-switch points. Furthermore, we exclu-
sively consider intra-sentential code-switches because they are the most challenging.
In case one utterance ends in Chinese or English, while the following utterance start
in the other language we ignore this inter-sentential code-switch. The prediction of
the language of a word and the predicting of code switching points is related. To
derive the prediction of code-switch points from prediction of language identification
we need to compare the predicted language and the actual language of neighboring

4.2. Text Based Prediction of LID and Code-Switch Points 29

Act LID w0 Act LID w1 Pred LID w0 Pred LID w1 Evaluation
L1 L2 L1 L2 true positive
L1 L2 L2 L1 true positive
L1 L1 L1 L1 true negative
L1 L1 L2 L2 true negative
L1 L1 L1 L2 false positive
L1 L1 L2 L1 false positive
L1 L2 L1 L1 false negative
L1 L2 L2 L2 false negative

Table 4.6: This table shows how code-switch points can be derived from the LID.
The predicted (Pred) and actual (Act) LID are considered.

words. If we would be able to predict every language correctly, we would also be able
to predict every code-switch point correctly. Knowing the language of two consecu-
tive words is sufficient to determine if a code-switch point is happening. We define
the words, which we observe as w0 and w1 where w1 is the succeeding word of w0 in
the same utterance. L1 and L2 individually stand for one of our languages in our
data, in particular Chinese or English. L1 and L2 can be either of these languages,
but never the same. The possible cases are shown in table 4.6. Note that we do not
evaluate, whether the predicted language identification for w0 and w1 is correct, but
whether the derived predictions and the reference are code-switch points.

4.2.8 Evaluation of Predicted Code-Switch Points

We evaluated our predicted language against the code-switch points in the reference
utilizing the same classifiers as in our previous experiments. Due to the better
results, we derive our predicted code-switch points from our predicted language
identification, where we included the actual language identification of past words
as features. There is a code-switch in 6.56% of our instances on the development
set and 8.25% of our instances on the evaluation set. Therefore, true negatives
(positions, where we have predicted to be no code-switch and there actually is none)
are not that interesting to evaluate for this experiment. Consequently, we focus on
precision, recall and F-measure for evaluation. The results are displayed in Table
4.7. Figure 4.7 shows an overview of the F-measure results, considering the results of
our different classifiers. The logistics classifier [34] performs best. Please note that
due to a high number of true negatives the correct instances are about 90% for all
applied classifiers on both sets. However, an F-measure of 0.205 on the development
set and 0.300 on the evaluation set is rather low. In order to compare the results
to the baseline we applied for predicting language identification is not feasible as it
classified every word as Chinese and predicts 0 code-switch points.

We considered two random baseline approaches for predicting code-switch points
and compare them to our result. The first approach has a probability of 50% to
predict an instance as a code-switch point, due to two possible classes (code-switch
point, no code-switch point). In the second approach the probably to predict an
instance as a code-switch point is equal to the fraction of code-switch points in

30 4. Experiments

Figure 4.7: F-measures of our CSP prediction experiment.

Figure 4.8: Results of our experiment to predicting code-switch points for develop-
ment set (Devset) and evaluation set (Evalset) compared to random predictions.

4.2. Text Based Prediction of LID and Code-Switch Points 31

Classifier Set F-Measure Precision Recall
J48 Dev. 0.136 0.162 0.117
Logistics Dev. 0.205 0.220 0.191
Naive Bayes Dev. 0.150 0.182 0.123
Logit Boost Dev. 0.205 0.220 0.191
J48 Eval. 0.269 0.301 0.243
Logistics Eval. 0.300 0.309 0.291
Naive Bayes Eval. 0.244 0.328 0.194
Logit Boost Eval. 0.290 0.311 0.272

Table 4.7: Results of predicted code-switch points derived from our predicted lan-
guage identification.

the set. For these baselines, we assume the recall to be equal to the fraction of
predicted code-switch points in order to simulate a random prediction. Table 4.8
compares our prediction of code-switch points with the random prediction of code-
switch points, which has a 50% chance to predict code-switch points and a recall of
50%. Calculating the first random approach, we achieve an F-measure of 0.116 on
the development set and 0.142 on the evaluation set for the first experiment. For
the second experiment, we achive an F-measure of 0.033 on the development set and
0.041 on the evaluation set. Both baseline results are significantly worse than our
best F-measure of 0.205 on the development set and 0.300 on the evaluation set. For
this experiment, a high F-measure is not realistic because, as described in [31], the
speaker has a high flexibility in the decision where to code-switch. Even if we have
suitable conditions for a code-switch point, the reference speaker may still decide not
to code-switch. The reference is only one realization of the speaker’s choice. That
means our result evaluated on the baseline shows, what we can achieve at least. In
[31], CS sentences are artificially generated and evaluated by human evaluators. We
consider this labor intensive task as unnecessary for our work, because our results
indicate that utilizing POS tags, language identification, and the count of preceding
words provides useful information for predicting code-switch points. Furthermore,
we are proceeding to the next step, where we do multilingual language modeling on
utterances containing CS.

4.2.9 Summary of our Prediction Experiments

From our experiments of predicting the language of a word and code-switch points,
we conclude the following results:

• Based upon language identification from text, POS tags and the count of
preceding words in the current utterance, we can predict the language of the
current word with a success rate of 92.8% on the development set and 90.8%
on the evaluation set, respectively. The baseline provides a success rate of
74.3% on the development set and 77.6% on the evaluation set.

• Omitting the actual language identification from the features leads to a per-
formance drop to 79.7% on the development set and 81.7% on the evaluation
set.

32 4. Experiments

Set PPL 2-gram PPL 3-gram PPL 4-gram OOV
Development 342.1 333.2 332.0 7.76%
Evaluation 345.4 338.6 337.9 8.14%

Table 4.8: OOV and perplexity(PPL) of 2-gram, 3-gram, and 4-gram language
models, built on our training data.

• For predicting code-switch points based upon language identification, POS
tags and the count of preceding words in the current utterance, we achieve
an F-measure of 0.205 on the development set and 0.300 on the evaluation
set. Compared to the baseline where we can achieve an F-measure of 0.116 on
the development set and 0.142 on the evaluation set, our results are still an
improvement.

Since we achieved an improvement in our experiments on predicting code-switch
points, we conclude that the language of a word and POS tags in combination
contain information about code-switch points. In our experiments on predicting
the language of a word, we observed that applying POS tags of preceding words
and the number of preceding words, provides a performance improvement compared
to our baseline, where we predict every word as Chinese. However we get a more
significant improvement, if we include the actual language of preceding words as
features. Since we derived our prediction of code-switch points from our prediction
of language, also the individual factors may contain information for predicting code-
switch points. Therefore we apply language and POS tag features individually and
in combination in our factored language model experiments described in Section 4.5.

4.3 Baseline Speech Recognition System

The amount of training speech data in our database is not sufficient to build a speech
recognizer with good performance. A sufficiently large multilingual Mandarin-English
speech database was not available in the begin of this work. Since Mandarin is our
matrix language, we apply a Mandarin speech recognizer and perform an adaption
using our training speech data. We utilize the CMU-InterACT 2008 Mandarin Tran-
scription System [38] as Mandarin speech recognizer. In particular, we use the AM1
system, which is described as a speaker independent initial-final model applying
multi-style training utilizing 1,300 hours broadcast news and broadcast conversa-
tion data for training. The AM1 system used maximum likelihood (ML) training
with about 6,000 codebooks. We perform speaker-adaptive training (SAT) with fea-
ture space adaptation (FSA) on the AM1 system utilizing our training set of our
Mandarin-English speech corpus. We investigated the use of 2-gram, 3-gram, and
4-gram language models built exclusively on our 14983 word tokens of training data.
The 2338 different words of the training data were used as our vocabulary. Table
4.8 shows an overview about the perplexities and OOV rates. The OOV rate is in-
dependent of the n-gram order. It can be observed that the 4-gram language models
has the lowest perplexity on the development and evaluation set. The 3-gram lan-
guage model has a marginally higher perplexity than the 4-gram language model on

4.4. Factored Language Models - Fundamentals 33

both set. The 2-gram language model has the highest perplexity among the three
language models on both sets. Due to the perplexity results, we apply the 4-gram
language model built upon our Mandarin-English CS training set for the decoding
process. Considering our limited text data and the marginal perplexity difference
between the 3-gram and the 4-gram language model, we investigated the use of a
3-gram language model instead of a 4-gram. On the development set the (rounded)
MER was equal applying the 3-gram or the corresponding 4-gram language model.
However, the number of errors on the system with the 4-gram language model was
marginally lower. We built the language model with the SRI language model toolkit
[15] using the original (unmodified) Kneser-Ney smoothing [39].
Our baseline system achieved a MER of 59.1% on our development set and 60.8%
on our evaluation set. Note that these error rates are rather high, but it has to be
considered that we recognize conversational and meeting data, which is more diffi-
cult to recognize than read speech. Also intra-sentential CS proposes a challenge for
automatic speech recognition, which affects the error rate compared to monolingual
speech data.

4.4 Factored Language Models - Fundamentals

This section describes the fundamentals of factored language models (FLM) [3]. The
idea of this section is to describe what factored language models are and to point out
the challenges for factored language models. Furthermore, the FLM specification is
shown. This section is based upon the FLM Tutorial by Kirchhoff et al. [40].

FLMs have been introduced by Bilmes and Kirchhoff to incorporate morphological
information into language modeling. They are a flexible framework for including
information sources, like part-of-speech, into language modeling. In FLMs, a word
wt can be seen as a set of K factors:

wt = {f 1
t , f

2
t , · · · , fK

t } (4.1)

The factors itself can be anything connected to the current word. Examples for
factors are part of speech, morphological classes, word stems or even the word itself.
Using the word itself as a factor is particularly useful since the probabilistic language
model can be built upon the words and additional factors. The statistical language
model is estimated over the set of overall factors:

p(f 1:K
1:T) (4.2)

FLMs provide many different modeling options in addition to those for standard
n-gram language models. With the chain rule of probability we can get:∏

k

p(fk
t |f 1:k−1

t , f 1:K
t−n+1:t−1) (4.3)

This is only one possibility of chain rule ordering. There can be 2nK possible options
for conditioning p(fk

t | · · ·).
The key design challenges for creating an FLM are:

1. Choosing a suitable set of factors. Data-driven techniques or linguistic knowledge
can be used for this task.

34 4. Experiments

Figure 4.9: Example FLM over words Wt, morphological factors Wt and stems St

[40].

2. Determine the best statistical model of the chosen factors. The goal is to
limit the estimation difficulties, which are present in standard n-gram models
and to obtain accurate predictions for the statistical properties of the applied
languages.

Figure 4.9 corresponds to the following model:

p(wt|st,mt)p(st|mt, wt−1, wt−2)p(mt|wt−1, wt−2) (4.4)

In the FLM of this example the word is dependent of its stem and the morphological
class. If the assumption of this dependency is correct the perplexity of p(wt|st,mt)
should be low (close to unity). The goal of this model is that the product of the
perplexities p(wt|st,mt), p(st|mt, wt−1, wt−2) and p(mt|wt−1, wt−2) is lower than the
perplexity of a traditional trigram. From an information-theoretic perspective, the
language model that minimize the perplexity is closest to the true probability dis-
tribution of the language [2].
It may be helpful adding Mt−1 and St−1 as additional parents of Mt to the FLM
because they might decrease the perplexity of p(mt| · · ·). However, adding parents
increase the difficulty of the estimation problem, i.e. the dimensionality. Therefore,
the goal for obtaining suitable factors for an FLM is to find the best balance between
predictability and estimation error. The predictability influences the entropy and
perplexity of the language model and should increase with additional parents as long
as they provide useful information. Finding the best balance is a common problem
in the field of statistical inference, where variance and bias may be traded for each
other [40].
Another important point for designing the structure of an FLM is to consider that
some factors may be unknown. Given the example

p(wt|wt−1, wt−2, st−1, st−2,mt−1,mt−2) (4.5)

4.4. Factored Language Models - Fundamentals 35

Figure 4.10: Example backoff path of a 4-gram language model [40].

Compared to the previous example, previous stems s and morphs m have been
included as parents. Normally, stems and morphs are deterministic functions of the
corresponding word. That means that we cannot usually gain additional information
from the stem and the morph if we know the word itself. Still, it may be useful to
include the stems and morphs as a parent as there may be n-grams which do not
occur in the training data, but the word and the preceding stems and morphs do.
In such a case, we would gain information by backing off to the word and preceding
stems and morphs compared to just the word itself.

4.4.1 Backoff for FLMs

For standard n-gram language models, it is reasonable to drop the most distant
parent first, linearly continuing with the parents, which are closer to the word. For
FLMs, it is a more difficult problem since there may be many different factors in
the language model.
Backoff is applied if there is insufficient training data available to fully estimate
a high-order conditional probability table [40]. Therefore, only a portion of the
table is estimated while the remainder is calculated from a lower-order model by
dropping at least one of the variables from the conditions, for example from a 4-
gram p(wt|wt−1, wt−2, wt−3) to a 3-gram p(wt|wt−1, wt−2).

Figure 4.10 shows the standard backoff path of a 4-gram language model. As long as
the string wt−3 wt−2 wt−1 wt appears with sufficient frequency in the training data,
the 4-gram p(wt|wt−1, wt−2, wt−3) is estimated. Otherwise a backoff to a lower order
n-gram is applied, where most distant words, for example wt−3, are dropped. The
procedure can be seen as a graph. Example backoff graphs are shown in figure 4.11.

For FLMs, we need distributions of the form p(f i
t |f

j1
t1 , f

j2
t2 , · · · , f

jN
tN

) with k = 1...N ,
a conditional probability table in the most general case. For simpler notation, we
write the model in the following form:

p(f |f1, f2, ..., fN) (4.6)

F is the child variable with N parent variables F1...FN and f is the possible value
of F . If we only have words as factors in the FLM, it is common to drop the most
distant word first. However, if there are factors involved which are not exclusively
words, it is not obvious, which factors are to drop in which order. Even if assumed
that only one parent is dropped at a time, there is a very large number of possibilities.

36 4. Experiments

Figure 4.11: Backoff graphs for p(F |F1, F2, F3) showing all possible backoff paths
(left), or where only a subset of possible backoff paths is allowed (right) [40].

Furthermore, it is possible to drop more than one parent or add parents in a backoff
step.

There are several approaches for choosing the backoff paths [40]. Among those are:

• Dropping always the most distant parent, as it is done in typical word based
n-gram language models.

• Dropping the parent, which is found to contain the least information in an
information-theoretic sense.

• Dropping the parent based on a tradeoff between statistical predictability and
estimation.

• Generalized all-child backoff: Multiple child nodes in the backoff graph are
chosen during run-time. This will be described in the next subsection.

• Generalized constrained-child backoff: A subset of the child nodes in the back-
off are chosen at run time. This will also be described in the next subsection.

4.4.2 Generalized Backoff

Generalized backoff [40] allows to choose multiple dynamical paths at runtime, when
moving from a higher level to a lower level in a backoff graph instead of choosing a
fixed path. For generalized backoff there are two options:

• Only one path is chosen at a time, but dependent on the particular sequence
of words or factors which need a probability to be estimated, the backoff path
may change.

• Multiple backoff paths are applied simultaneously at runtime. Precisely, mul-
tiple paths will be used to generate a probability. The set of multiple paths
applied depend on the particular instance of the factor sequence.

Generalized backoff can improve over choosing only a fixed backoff path, since the
applied paths can be selected to suit best for the given factor instances. In our
experiments we mainly apply FLMs with only one backoff path, but we also utilize
one FLM with multiple backoff paths.

4.4. Factored Language Models - Fundamentals 37

4.4.3 FLM Training Data Format

Normally, training text for the language model consists of a text corpus. For an
FLM each word may be attached with a set of factors. Consequently, a stream of
vectors instead of a stream of words must be specified. An FLM is a model over
multiple streams of data, each stream corresponding to a factor in the model [40].
Each factor receives a tag attached with dash ”-” and different factors corresponding
to a word are separated with ”:”. For words, the tag W is used and may be omitted.
If the value of a factor corresponding tag is missing NULL is used. The order of the
factors is irrelevant [40].
Example:

speaking is natural

If we use the word itself (W) and POS tag (P) as factors, we get:

P-noun:W-speaking P-verb:W-is P:adjective:W-natural

4.4.4 FLM File

The FLM file [40] consists of at least one specification of a given FLM. Multiple
FLM specifications are trained simultaneously and used for perplexity calculation
or N-best rescoring. Comment lines start with #. Ignoring comment lines, the
first line specifies the number of FLMs. Then a header line follows, containing the
specification of the child followed by a ”:”, number of parents, the parents itself, a
count file name, a language model file name, and the number of backoff node lines
to follow. A backoff node line must not appear before the header line and consists
of a set of parents, a set of parents to drop and possibly node options. The header
line of FLM syntax is defined:

child: num_parents par_1 par_2 ... par_N count_file

lm_file num_of_backoff_nodes

After the header line there are node backoff lines:

parent_list drop_list node options

The parent list is a comma separated list, displaying the parents corresponding to
this node. The drop list is a comma separated list of the parents to be dropped
at this stage. The drop list is a subset of the parent list. The child variable is the
random variable, which we want to predict. In normal n-grams and in all of our
experiments with FLMs, this would be the words. The parents are specified with
a time offset, which indicates the position of the parent in relation to the current
node (negative offsets specify the past, positive specify the future). An example for
a standard trigram language model looks as follows [40]:

standard 3-gram LM using unmodified Kneser-Ney discounting

W: 2 W(-1) W(-2) word_3gram.count word_3g.lm 3

W1,W2 W2 ukndiscount gtmin 3 interpolate

W1 W1 ukndiscount gtmin 1 interpolate

0 0 ukndiscount gtmin 1

38 4. Experiments

In this example, we drop the temporally most distant parent first. We remove W2
which is the word appearing two words before the current word. Then we delete the
following word of W2, namely W1. 0 is indicating that there are no parents and no
parents are dropped therefore.

Another example for a trigram language model this time with a time-reversed backoff
path [40]:

time reversed 3-gram LM

W: 2 W(-1) W(-2) word.count word_3g.lm 3

W1,W2 W1 ukndiscount gtmin 3 interpolate

W2 W2 ukndiscount gtmin 1 interpolate

0 0 ukndiscount gtmin 1

In this example we drop the word preceeding the current word (W1) before its
predecessor (W2).

To display the use of generalized backoff, an example for a trigram with generalized
backoff is shown [40]:

3-gram LM with generalized backoff

W: 2 W(-1) W(-2) word.count word_3g.lm 4

W1,W2 W1,W2 ukndiscount gtmin 3 interpolate

W2 W2 ukndiscount gtmin 1 interpolate

W1 W1 ukndiscount gtmin 1 interpolate

0 0 ukndiscount gtmin 1 kn-count-parent W1,W2

We have four backoff nodes in this example both W1 and W2 can be dropped in the
first step.

It is possible to skip a level in the FLM backoff-graph by setting the minimum counts
(gtmin) to a very high value that the node will not be reached [40]:

word given word morph (M) stem (S)

W: 3 W(-1) M(-1) S(-1) dev.count dev.lm 5

W1,M1,S1 W1 ukndiscount gtmin 2 interpolate

M1,S1 M1,S1 ukndiscount gtmin 100000000 combine mean

M1 M1 ukndiscount gtmin 1 kn-count-parent W1,M1,S1

S1 S1 ukndiscount gtmin 1 kn-count-parent W1,M1,S1

0 0 ukndiscount gtmin 1 kn-count-parent W1,M1,S1

In this example, we have an FLM using words (W), morphs (M) and stems (S) as
factors. First W1 is dropped. The node M1,S1 has a very large minimum count. It
does not hit. The scores of this node have to be combined from lower-level nodes, i.e.
from the mean of p(Wt|Mt−1) and p(Wt|St−1), because S1 and M1 may be dropped
individually.

4.4. Factored Language Models - Fundamentals 39

4.4.5 Data-driven Search of FLM Parameters

According to [40], there are different types of parameters to specify an FLM:

• Initial conditioning factors: Which factors shall be used for n-gram probability
estimation?

• The backoff graph and smoothing options: How is robust estimation processed
in case of insufficient data?

The goal of the data-driven parameter search is to get a low perplexity on unseen
data. For a factored word representation with k factors, there are

∑k
n=1

(
k
n

)
possible

initial conditioning factor subsets. Given we have m conditioning factors, up to m!
backoff paths are possible, each with its own smoothing options. Thus for large m, an
exhaustive search is not feasible. Furthermore, these parameters interact with each
other making the search especially difficult. The performance of an FLM structure
is data dependent. In [41], a genetic algorithm for tuning FLMs named GA-FLM
was developed. It applies the training text and a development text and attempts to
find FLM parameters minimizing the perplexity on the development set.

The program flow of GA-FLM is illustrated in Figure 4.12 and works in the following
way:

1. Initialize a population of genes, where each gene represents an FLM with
specific conditioning factors, backoff path and smoothing options.

2. From each gene the FLM file is created and the language model is trained and
tested.

3. The fitness value of the gene is determined by the perplexity of the user sup-
plied development set.

4. Selection, crossover and mutation is applied in order to get the next population
of genes.

5. GA-FLM runs until convergence or the maximum generations specified by the
user is reached.

6. The best gene of each generation is included in the next generation.

In section 4.5 we build a FLM using GA-FLM.

40 4. Experiments

Figure 4.12: Program flow of genetic algorithm (GA) search for FLM structure [41].

4.5 FLMs for Recognizing Utterances with intra-

sentential CS

This work was mainly done at the Cognitive Systems Lab at the Karlsruhe Institute
of Technology. Utterances with intra-sentential CS imply a special challenge for au-
tomatic speech recognition, particularly for the language model. While monolingual
utterances are comparatively easy to handle with statistical n-gram language mod-
els, utterances with CS are problematic since the language model needs to model
a probability for language switches implied in the common probability of word se-
quences. Therefore, it is reasonable to use further information in the language in
addition to words. The FLM [40] allows to use a set of factors in addition to nor-
mal words in the standard n-gram language model. Consequently, we decided to
apply FLMs for speech recognition of speech data with intra-sentential CS. Note
that to our best knowledge, factored language models have not been used to recog-
nize speech containing intra-sentential CS before. Our approach uses the following
factors:

• Common words,

• Language of each word,

• Part of speech tag of each word,

• Likelihood of a code-switch after the current word.

4.5. FLMs for Recognizing Utterances with intra-sentential CS 41

Utilizing words as a factor is obvious, since they are applied in common n-gram
language models and are useful to estimate the probabilities of word sequences.
The language of each word is a surjective function of its corresponding word, as
long as we are only considering English and Chinese. Note that there are no words
shared between those languages. Consequently, if we we know a word, we do not
gain information from its language, since we already are aware of the language
corresponding to the known word. Therefore, the language is only helpful in case
a word (which may be in the history) is an out-of-vocabulary (OOV) word. In our
work a word is an OOV word, if it is not covered by the language model. The
vocabulary in our specified vocabulary file matches the vocabulary in our baseline
4-gram language model, which was exclusively built on the training transcriptions.
If we have a word which is OOV, its language is still known, because all possible
values of the language ID (which are Chinese and English in our experiments) appear
in the training data.
The utilized POS taggers are described in Section 4.1. Our prediction experiments
in Section 4.2 motivate the use of POS tagging and language factors as these features
are useful for predicting language and code-switch points. POS tags are context-
dependent and provide syntactic information, which may be helpful to get a more
suitable estimation for utterances containing intra-sentential CS. As displayed in
an example of [1] described in section 2.1, CS may happen at sentence or utterance
boundaries, too. However, our work focus on intra-sentential CS, since it is the more
challenging and general problem.
We investigated if there are key words in the training set after which a code-switch is
likely to happen. Therefore we estimated the likelihood of a code-switch after each
word on the training set. Since our code-switch corpus is rather small, we made a
1-gram estimation. We split the probabilities into two, three, and five classes with
an equally distributed likelihood range. It was a class added for words, which do
not appear in the training data. We added the code-switch point probability classes
as a factor for the FLM training data. Given we have the following phrase:

YOUR CHINESE IS REALLY GOOD

The representation for the FLM training data looks like

YOUR:P-PN:L-en:S-CS0 CHINESE:P-NN:L-en:S-CS0 IS:P-VV:L-en:S-CS0

REALLY:P-AD:L-en:S-CS0 GOOD:P-JJ:L-en:S-CS1

P indicates the POS tag, while L indicates the language ID and S the code-switch
probability class. The different factors are separated by ”:”. In this example, we have
an English utterance without any code-switch points. Therefore the language ID for
each word is en. Furthermore, after each of these words, except GOOD, a code-
switch is not likely. GOOD has the code-switch probability class CS1, indicating
a following code-switch is likely. All other words in our example have the code-
switch probability class CS0, which indicates that a code-switch is unlikely. The
POS tagger provides appropriate tags for the words. For example, the word YOUR
is tagged as a pronoun (PN).

42 4. Experiments

4.5.1 N-Best Rescoring with Factored Language Models

The direct use of factored language models in the decoder is not supported in the Ibis
decoder [25]. Therefore, we decided to use factored language models in the rescoring
process. As described in Section 4.4, FLMs require their own text data format if
factors are different from words. We intended to achieve a suitable integration for the
FLMs, working on data in the appropriate FLM data. We generated the lattice with
the standard n-gram baseline language model and created a number of hypotheses,
which are to be reranked with factored language models. This reranking is called
N-best rescoring. The best reranked hypothesis is evaluated for each utterance and
a combination of N-best rescoring parameters.

4.5.2 FLM Design

While we have described the choice of the factors of our FLMs earlier, this subsection
describes the structures of our FLMs. Most of our FLMs have been designed
knowledge-based, while we created a few FLMs data-driven. For the knowledge-
based FLM design, we aimed to incorporate additional information compared to
our 4-gram baseline language model. Consequently, we included a history of three
words in all our knowledge-based FLMs, so that we avoid losing information on
word level. Additionally, we intended to be able to evaluate each additional factor
(language, POS tags, code-switch point probability) individually and their combina-
tion as well. Considering that our speech data with English-Mandarin CS is rather
small, the data should favor a estimation in a lower dimension over possible more
information by adding additional parents. However, we investigated a varying num-
ber of parents for the LID. For all our language models, we applied the original
(unmodified) Kneser-Ney discounting [39], since Kneser-Ney discounting tends to
provide the best performance (for n-gram language models) compared to other dis-
counting methods. We utilized Kneser-Ney discounting for FLMs, since we applied
this discounting method for our n-gram baseline language model and to investigate
different discounting methods was not our focus. We used the original (unmodi-
fied) Kneser-Ney discounting, since previous experiments have shown that modified
Kneser-Ney discounting is more likely to provide problems on small data, which we
have for some of our applied factors. Furthermore, comparing different discounting
methods is not our objective. We created the following FLMs for rescoring:

• built on words and one LID parent (LID1).

• built on words and three LID parents (LID3).

• built on words and one unified POS tag parent (POSU).

• built on words and one POS tag parent, where the POS tags, processed with
the Mandarin tagger, remain unmapped, while all POS tags, processed with
the English tagger, are mapped to a special tag EN (POSEN).

• built on words and one code-switch probability parent with 2 classes (Prob2).

• built on words and one code-switch probability parent with 3 classes (Prob3).

• built on words and one code-switch probability parent with 5 classes (Prob5).

4.5. FLMs for Recognizing Utterances with intra-sentential CS 43

FLM Name LIDt−1 POSt−1 CSPt−1 LIDt−2&3 Comments

LID1 yes no no no -
LID3 yes no no yes -
POSU no yes no no unified POS tags
POSEN no yes no no Mandarin POS tags

unmapped, all English
POS tags to ”EN”

Prob2 no no yes no 2 classes for CSP
probability

Prob3 no no yes no 3 classes for CSP
probability

Prob5 no no yes no 5 classes for CSP
probability

LIDPOS yes yes no no unified POS tags
LIDPOSProb yes yes yes no 2 classes for CSP

probability, unified
POS tags

GA yes yes no no data-driven built with
GA-FLM, includes ad-
ditional parents

Table 4.9: FLM designs and the applied parent factors related to word history t.

• built on words, one LID parent and one unified POS tag parent (LIDPOS).

• built on words, one LID parent, one unified POS tag parent and one code
switch-probability parent with 2 classes (LIDPOSProb).

• built data-driven with GA-FLM [41] on LID, unified POS tags and code-switch
probability with 2 classes (GA). The backoff nodes and paths were chosen by
GA-FLM while we limited the discounting method to the original (unmodified)
Kneser-Ney discounting.

Table 4.9 shows an overview about different designs for factored language mod-
els. With the following example we describe the design of the FLM labeled as
LIDPOSProb in detail and describe differences to other FLMs. The FLM file corre-
sponding to our FLM LIDPOSProb is the following:

1

W : 6 W(-1) W(-2) W(-3) P(-1) L(-1) S(-1) trainALL.count trainALL.lm 7

W1,W2,P1,W3,L1,S1 W3 ukndiscount gtmin 0 interpolate

W1,W2,P1,L1,S1 W2 ukndiscount gtmin 0 interpolate

W1,P1,L1,S1 W1 ukndiscount gtmin 0 interpolate

P1,L1,S1 S1 ukndiscount gtmin 0 interpolate

P1,L1 P1 ukndiscount gtmin 0 interpolate

L1 L1 ukndiscount gtmin 0 interpolate

0 0 ukndiscount gtmin 0 interpolate

44 4. Experiments

Figure 4.13: The design of our FLM labeled LIDPOSProb with words (W), LID
(L), POS tags (P) and code-switch probabilities (S).

The graph to our FLM LIDPOSProb is shown in Figure 4.13. The model corre-
sponding to this FLM is

p(Wt|Wt−1,Wt−2,Wt−3, Lt1 , Pt1 , St−1) (4.7)

so the probability p(wt) is estimated with the language tag of the preceding word,
one preceding POS tag, one preceding code-switch probability and three preceding
words. This is indicated by the black connectors in Figure 4.13. The dotted red
connectors show the backoff path, in case of insufficient data. We dropped the word
history first, starting with the most distant one, afterwards dropping the code-switch
probability, subsequently the POS tag and finally the language id leaving only the
current word wt. Dropping temporally distant words first is common for normal
n-gram language models. We decided to drop the word Wt−1 before any non-word
factor because a word may be OOV, while the training data contains all possible
values for LID, POS tags and code-switch point probabilities. The drop order of Lt−1,
Pt−1, and St−1 was based upon the MER performance improvements we achieved
on our designed FLMs, which contained one of these parents in addition to common
words (LID1, POSU, Prob2). Since we achieved the highest MER improvements
applying the language ID, we dropped this factor at last. Since the code-switch
probabilities performed worst, we drop this factor before POS tags.

The structure of the FLMs LID1, POSU, POSEN, Prob2, Prob3, Prob5 and LIDPOS
is similar to the structure of LIDPOSProb, but one or two non-word nodes are
missing. The structure of our FLM LID3 is a little different since there are three

4.5. FLMs for Recognizing Utterances with intra-sentential CS 45

preceding LIDs to consider not just the LID corresponding to the directly preceding
word Wt−1. We are dropping the factors, which have the largest distance from the
current word first and dropping the word before the LID. The FLM specification file
for our FLM LID3 is the following:

1

W : 6 W(-1) W(-2) W(-3) L(-3) L(-2) L(-1) train.count train.lm 7

W1,W2,L1,L2,L3,W3 W3 ukndiscount gtmin 0 interpolate

W1,W2,L1,L2,L3 L3 ukndiscount gtmin 0 interpolate

W1,L1,L2,W2 W2 ukndiscount gtmin 0 interpolate

L1,L2,W1 L2 ukndiscount gtmin 0 interpolate

L1,W1 W1 ukndiscount gtmin 0 interpolate

L1 L1 ukndiscount gtmin 0 interpolate

0 0 ukndiscount gtmin 0 interpolate

1

4.5.3 N-Best Rescoring Parameters

In addition to using different FLMs, there are other parameters of importance for
N-best rescoring:

• Number of hypothesizes extracted from the lattice per utterance: This is an
important parameter since we are reranking utterances. More utterances to
rerank may give the FLM the opportunity to increase the performance. How-
ever, more hypotheses increase the time needed for the rescoring process. We
mainly worked with 100 hypotheses per utterances but also did some experi-
ments with 10,000 hypothesizes per utterance. Please note that if the lattice
is small, it may not be possible to extract the desired number of hypothe-
sizes. This parameter is exclusively for N-best rescoring and does not affect
the baseline.

• Language model weight (LZ): This defines the weight, which the language
model score has within the overall score each individual hypothesis receives.
A higher value increases the importance of the language model. We used
27, 30, 33, 37, 40, and 43 as language model weights. These values were
chosen, considering the baseline performance on different LZ parameters on
the development set.

• Word transition weight (LP): The word transition weight assesses the number
of words in the hypothesis in relation to the acoustic model score. A higher
word transition weight means a higher penalty to insert a word. We used -12
to 6 as LP values with an increment of 2.

4.5.4 FLM N-Best Rescoring Framework

The FLM N-best rescoring framework models the complete rescoring process with
FLMs. We used mainly Shell Script and Perl for programming this framework. The
framework requires the following preconditions:

46 4. Experiments

• The baseline speech recognition system is created and decoded. The lattices
are available in HTK [42] format.

• The FLM, which is to be applied for the rescoring process, is built on correctly
formatted training data.

• The SRI Language Modeling Toolkit [15] is available.

• Since we programmed the framework using Perl and Shell Script, they both
need to be available.

• To use an FLM with POS tag, the Stanford POS tagger needs to be available.

• If CS point probabilities are applied, they have to be estimated before.

The rescoring framework is displayed in Figure 4.14. The detailed process works in
the following way:

1. As long as there are unprocessed language model weight and word penalty
combinations, we perform an N-best rescoring with an unprocessed combina-
tions. If there are no unprocessed combinations, we are done.

2. With the SRI Language Modeling Toolkit [15] we obtain an N-best list for
each utterance in the lattice. For our experiments, we created lattices with
(up to) 100 or 10,000 hypotheses per utterance.

3. We extract the cleaned hypotheses from the N-best list (which also includes
acoustic model score, language model score, number of words and beginning
and end tags) to convert the hypothesizes into the FLM training data format.

4. We convert the hypotheses to the FLM training data format so that the FLM
can provide accurate language models scores. The training data format may
include language, POS tag and code-switch point probability in addition to
words. The language of a word is determined by evaluating the corresponding
number of the characters of words. Since English words consist of ASCII
characters and Mandarin words consists exclusively of non-ASCII characters,
we can determine the language without error. For the POS tagging, we apply
monolingual Mandarin and English taggers and map the tags to a unified
set. Details can be found in Section 4.1. The code-switch point probability is
estimated on the training set and written to a file. For the rescoring process,
this file is read and the probability class is added into the hypotheses.

5. The hypotheses in FLM training data format are merged with the original N-
best list to create a new N-best list containing acoustic model score, language
model score of the baseline n-gram language model, number of words, and the
hypotheses in FLM training data format.

6. Using the SRI Language Model Toolkit with the FLM extension, we apply the
FLMs on the merged N-best list in order to obtain the language model scores
of the FLM for each hypothesis.

4.5. FLMs for Recognizing Utterances with intra-sentential CS 47

Figure 4.14: N-best rescoring framework applying factored language models.

7. With the SRI Language Model Toolkit, we rerank the different rescored hy-
potheses for each utterance, where the best ranked hypotheses for each utter-
ance is used is compared with the reference.

8. Continue with step 1.

Figure 4.15 shows an example for the FLM rescoring framework of an N-best list with
five utterances. In the example, the hypothesis ending with RIGHT gets a higher
position due to the FLM rescoring. However, the order of the best hypothesis in
this example remains unchanged. So we do not have a change in the performance
here.

48 4. Experiments

Figure 4.15: N-best rescoring example in different steps.

4.5.5 Evaluation of FLM Designs using N-Best Rescoring

We integrate our FLMs with N-best rescoring and calculate the MER and the per-
plexity on the development set and evaluation set. This subsection is about exper-
iments with (up to) 100 hypotheses per utterances. We always consider the best
LZ/LP combination for the MER.
Considering the MER results in Table 4.10 and 4.11, we can observe that applying
a suitable FLM for N-best rescoring, leads to a minor performance improvement.
Given the performance improvement, the language of the corresponding word seems
to be the most useful factor. Regarding the MER, it does not seem to be relevant,
whether we use three LID parents (LID3) or one LID parent (LID1). However, on
later experiments with up to 10,000 hypotheses per utterance, our LID1 systems
perform better than the corresponding LID3 system. The unified POS tags (POSU)

4.5. FLMs for Recognizing Utterances with intra-sentential CS 49

FLM MER Rel. Performance Improvement LZ LP

none (baseline) 59.1% 0% 37 -2
LID1 58.8% 0.5% 33 -10
LID3 58.8% 0.5% 37 -12
POSU 59.0% 0.2% 40 2
POSEN 59.2% -0.2% 37 -4
Prob2 59.3% -0.3% 40 -2
Prob3 59.4% -0.5% 40 4
Prob5 59.5% -0.7% 40 -6
LIDPOS 58.6% 0.8% 33 -12
LIDPOSProb 58.8% 0.5% 37 -10
GA 59.2% -0.2% 37 -10

Table 4.10: MER result overview for N-best rescoring on the development set with
100 hypotheses per utterance

FLM MER Rel. Performance Improvement LZ LP

none (baseline) 60.8% 0% 43 -12
LID1 60.6% 0.3% 40 -12
LID3 60.6% 0.3% 37 -12
POSU 61.1% -0.5% 43 -10
Prob2 61.0% -0.3% 37 -10
LIDPOS 60.5% 0.5% 43 -10
LIDPOSProb 60.7% 0.2% 43 -10

Table 4.11: MER result overview for N-best rescoring on the evaluation set with 100
hypotheses per utterance

FLM MER Perplexity Rel. Perplexity Reduction Vocab

none (baseline) 59.1% 332.0 0.0% 2338
LID1 58.8% 285.1 14.1% 2340
LID3 58.8% 298.2 10.2% 2340
POSU 59.0% 381.2 -14.8% 2360
POSEN 59.2% 279.4 15.8% 2371
Prob2 59.3% 305.2 8.1% 2341
Prob3 59.4% 313.2 5.7% 2342
Prob5 59.5% 326.1 1.8% 2344
LIDPOS 58.6% 317.4 4.4% 2362
LIDPOSProb 58.8% 294.4 11.3% 2365

Table 4.12: MER and perplexity result overview for N-best rescoring on the devel-
opment set with 100 hypotheses per utterance.

50 4. Experiments

Figure 4.16: Perplexity result of FLM N-best rescoring experiments.

FLM MER Perplexity Rel. Perplexity Reduction Vocab

none (baseline) 60.8% 337.9 0.0% 2338
LID1 60.6% 300.8 11.0% 2340
LID3 60.6% 314.6 6.9% 2340
POSU 61.1% 342.4 -1.3% 2360
Prob2 61.0% 312.4 7.5% 2341
LIDPOS 60.5% 305.7 9.6% 2362
LIDPOSProb 60.7% 290.7 14.0% 2365

Table 4.13: MER and perplexity result overview for N-best rescoring on the evalu-
ation set with 100 hypotheses per utterance.

4.5. FLMs for Recognizing Utterances with intra-sentential CS 51

seem to provide a minimal performance increase compared to the baseline on the
development set, while the POSEN rescoring achieves a worse performance than the
baseline. The code-switch probability decreases the MER performance, providing
worse results with more different classes. We achieve the best performance with up
to 100 hypotheses per utterance, if we utilize an FLM with words, LID and POS
tags as factors (LIDPOS). Using this FLM, we achieve a performance improvement
of 0.5% absolute, which is 0.8% relative one the development set. On the evalua-
tion set, we can gain a performance improvement of 0.3% absolute, which is 0.5%
relative. Rescoring with the FLM with all factors (LIDPOSProb) is not as good
as applying the LIDPOS systems, since it seems that the code-switch probability
decreases the performance. The FLM built with GA-FLM [41] (GA) provides a
worse performance than our baseline. The best LZ/LP combinations vary for the
different experiments, but the best LZ value seems to be 33, 37 or 40 while the best
LP values are -10 and -12.

Beside the MER, we can evaluate the perplexity of various FLMs on development
and evaluation set. Table 4.12, Table 4.13 and Figure 4.16 show the perplexity of
our FLMs. Please recall that with OOV rate is at 7.76% on the development set and
8.14% on the evaluation set, considering words. All possible values for LID, POS
tag and code-switch point probability are completely covered in our training data.
Each FLM still applies the 2338 different words from the training transcriptions
as vocabulary. In addition FLMs containing LID nodes use two language IDs in
addition. FLMs applying unified POS tags, contain 22 POS tags in addition. The
FLM POSEN contains 33 additional POS tags. FLMs incorporating code-switch
point probabilities contain three to six code-switch point probability classes as ad-
ditional entires. The exact number depends on the number of code-switch point
probability classes applied. From the perplexity results on the development set, we
can conclude that the language ID and the code switch-point probability reduce the
perplexity of the FLM compared to the baseline. A lower number of code-switch
point probabilities seems to lead to a greater perplexity reduction than using more
classes. In combination with the MER results, it can be concluded that the code
switch probability factor is more useful with less different classes. For the language
ID, we can reach a greater perplexity reduction, if we only keep the language ID of
the directly preceding word and not of three preceding words. This result indicates
that the additional information, we can derive with further language ID parents, is
outweighed by the more difficult estimation. For the unified POS tags (POSU), it
can be observed that we get a higher perplexity than the baseline, while the POSEN
approach provides the highest perplexity reduction for the development set. The
POSEN system leaves the POS tags of the Mandarin tagger unmapped and tags
all English words as “EN”. This is actually an language ID like information, about
which tagger is used for each word, combined with further tagging information for
Mandarin. This approach is problematic for our language islands based POS tagging
as Chinese words may get the EN tag if the English tagger tagged them. Conse-
quently, English words may receive a tag from the Mandarin tag if they have been
tagged by a Mandarin tagger. These may reduce the difficulty of estimation and
therefore the perplexity. But it makes the language model inaccurate to a small
extend which explains the drop in MER performance. It is possible to change the
POS tagging approach in a way that we tag every word with a tagger in the lan-
guage the word belongs to. However, our POS taggers can handle a small amount of

52 4. Experiments

foreign words. More information about the POS tagging approach can be found in
Burgmer’s diploma thesis [24]. We mainly used our POSU approach, were we used
a unified mapping for the POS tags, where it is not necessary that every word is
tagged with a tagger of the language the word belongs to. The POSU approach has
a very high perplexity. In our experiments we realized that this high perplexity is
related to the unified tag set and the handling of English words. However, this POS
tagging approach leads to a small performance increase for the MER, also in com-
bination with other factors. The POSU system on the evaluation set is an outlier
for this observation.

Analyzing the impact of our CS probability factor, we derive that these factors
have a negative impact on the MER, where the impact is worse with more different
classes (Prob2, Prob3, Prob5). While increasing the number of different classes also
increases the perplexity, the perplexity of the FLMs Prob2, Prob3 and Prob5 is still
lower than the one of the baseline. This perplexity reduction can be explained by
errors in the code-switch probability factor. For our development set we estimate
our factors on the training set. These errors account for the case, that a particularly
word may be assigned to a particularly code-switch point probability class on the
training set. This class is assumed to be the accurate class on the development
set as well. If this assumption is incorrect, we get an error. Given our estimation,
the error on the development set is 7.0% for two classes, 10.4% for three classes and
13.8% for five classes. It is reasonable that the error rate increases with more classes.
Furthermore the increasing error rate is at least partially responsible for the rising
MER and rising perplexity from Prob2 to Prob3 and Prob5 and may explain the
performance loss compared to the baseline as well. Evaluating the combination of
factors, it is conclusive that the effects of the different factors, considering MER and
perplexity are accounted for in FLMs, containing different non-word factors. The
MER of our LIDPOS system is our best result.

4.5.6 Effect of the Number of Generated Hypotheses per
Utterances

In our previous experiments we created (up to) 100 hypotheses per utterance for
reordering. We applied the SRI language model toolkit [15] to derive the hypothe-
ses from the lattices. Using 100 hypotheses per lattice has the advantage that the
rescoring process is relatively fast. We use one core of 2.66 GHZ processor with 8GB
random access memory. Then we obtain rescoring results in about two hours if our
FLM does not need a POS tagger or in about 20 hours if we need a POS tagger
to process. This time is for our complete language model weight and word penalty
combinations which means 60 runs. However, if we create more hypotheses, we may
get better results because more hypotheses mean that it is likely that we get can
reduce the error rate, considering we chose the best hypothesize for each utterance.
This statement is supported by experiments described in the next subsection. To
investigate the effect of the number of hypotheses on performance and runtime, we
increase the limit for the maximum of hypotheses from 100 to 10k. Investigating the
runtime, it takes about 12 hours for a complete rescoring, if we do not need a POS
tagger or about three weeks if we utilize a POS tagger. For obtaining this informa-
tion we used one core of of 2.66 GHZ processor with 8GB random access memory
and our complete LZ/LP list which means we do 60 runs., since we have six different

4.5. FLMs for Recognizing Utterances with intra-sentential CS 53

Figure 4.17: MER result of FLM N-best rescoring experiments with 100 and 10k
hypotheses.

LZ and ten different LP values. We built our LID1, LID3, and our LIDPOS system
with (up to) 10k hypotheses per utterance and obtained the MER results. As for our
100 hypotheses system, we always consider the LZ/LP combination with the lowest
error rate. Our results are shown in Table 4.14. Figure 4.17 shows an overview of
the MER and perplexity in our FLM N-best rescoring experiments with 100 and 10k
hypotheses. Please note that our baseline does not apply any N-best rescoring and is
therefore independent of the number of hypotheses. If we consider the results for our
LIDPOS system, which provides the greatest performance increase, we see that we
can reduce our MER further by applying up to 10k hypotheses per utterance com-
pared to 100. For our development set, we can relatively reduce the MER by 1.18 %
with 10k hypotheses, while we can only achieve a reduction of 0.85% applying 100
hypotheses. There is a stronger difference of the MER reduction on our evaluation
set where we can achieve a 1.64% reduction with (up to) 10k hypotheses per utter-
ance, while we can only achieve a 0.49% relative reduction using 100 hypotheses per
utterance. We can more than triple our relative MER reduction on our evaluation
set and reduce the error further for our development set. Therefore, applying (up
to) 10k hypotheses per utterance definately has its use, given the higher runtime is
unproblematic.

54 4. Experiments

FLM MER 100 #Hypos Set Rel. MER Gain LZ LP

none (baseline) 59.1% - Dev. 0.00% 37 -2
LID1 58.8% 100 Dev. 0.51% 33 -10
LID1 58.4% 10k Dev. 1.18% 33 -10
LID3 58.8% 100 Dev. 0.51% 37 -12
LID3 58.6% 10k Dev. 0.85% 37 -4
LIDPOS 58.6% 100 Dev. 0.85% 33 -12
LIDPOS 58.4% 10k Dev. 1.18% 33 -10

none (baseline) 60.8% - Eval. 0.00% 40 6
LID1 60.6% 100 Eval. 0.33% 40 -12
LID1 60.2% 10k Eval. 0.99% 43 -8
LID3 60.6% 100 Eval. 0.33% 37 -12
LID3 60.5% 10k Eval. 0.49% 43 -6
LIDPOS 60.5% 100 Eval. 0.49% 43 -10
LIDPOS 59.8% 10k Eval. 1.64% 43 -12

Table 4.14: MER result overview for (up to) 100 and 10k hypotheses (hypos) per
utterance in the rescoring process.

System Set MER 100 MER 10k Gain 100 Gain 10k
Baseline Dev. 59.1% 59.1% 0.0% 0.0%
FLM LIDPOS Dev. 58.6% 58.4% 0.5% 0.7%
Oracle Dev. 50.8% 45.7% 8.3% 13.4%
Baseline Eval. 60.8% 60.8% 0.0% 0.0%
FLM LIDPOS Eval. 60.5% 59.8% 0.3% 1.0%
Oracle Eval. 50.9% 46.2% 9.9% 14.6%

Table 4.15: Comparison of the baseline MER, the MER of FLM LIDPOS, and the
oracle MER for 100 and 10k hypotheses.

4.5.7 Oracle Experiment

To further evaluate the results we performed an oracle experiment, i.e. we analyze,
what the best MER would be, if we always pick the hypothesis with the lowest error
rate for each utterance. This error rate is dependent on our baseline system, the
number of hypotheses per utterance, and the chosen LZ/LP combination. These
three factors influence the available hypothesis to calculate the MER compared to
the reference. This experiment is not applying any FLM to rescore. We selected
the LZ/LP parameter combination, which provides the best results. If we apply
100 hypotheses per utterance, the best combination is LZ=43 and LP=-4 and for
10k hypotheses per utterance LZ=43 and LP=2. These values were equal for the
development set and evaluation set.

Table 4.15 shows the MER performance of our baseline, our best performing FLM
(LIDPOS) and the oracle experiment for 100 and 10k hypotheses per utterance.
Furthermore the absolute gain compared to the baseline is displayed. The LIDPOS
FLM reaches a fraction of 3.03% to 6.85% of the gain, the corresponding oracle

4.5. FLMs for Recognizing Utterances with intra-sentential CS 55

experiment achieves. The fraction is 6.02% for 100 hypotheses and 5.22% for 10k
hypotheses on the development set. Regarding the evaluation set the fraction is
3.03% for 100 hypotheses and 6.85% for 10k hypotheses. There are two reasons
explaining our limited performance gain of our LIDPOS FLM compared to the
oracle experiment:

• As described earlier, the ranking of a hypothesis depends on its acoustic model
score, language model score, the number of words in the hypothesis, and the
weighting of these factors with language model weight and word penalty. Since
we do not make changes to the acoustic model score, we cannot expect to get
a performance anywhere near the oracle.

• Our best performing FLM (LIDPOS) is not close to an ideal language model
for our data.

For these reasons, it would be unrealistic to achieve the same performance as the
oracle by applying FLMs. However, calculating the percentage of our improvement
compared to the result of the oracle experiment may be more fair, compared to the
relative reduction of the MER to 0, which we cannot achieve by N-best rescoring.

4.5.8 Significance of our Results

A key aspect of evaluating results is to investigate, if the improvements are signifi-
cant. First, we will briefly describe very basic information about statistical signifi-
cance. For this purpose, we translate several definitions from [43] into English and
combine them with the application of our experiments:

• Alternative hypothesis: The alternative hypothesis µ means that there is
a difference or connection between phenomena or approaches. In our case, our
alternative hypothesis is that N-best rescoring with suitable FLMs on intra-
sentential CS data leads to a performance improvement regarding the MER,
compared to the baseline system.

• Null hypothesis: The null hypothesis µ0 indicates that the connection pro-
posed in the alternative hypothesis is not there. For our experiments the null
hypothesis is the following: Applying N-best rescoring with suitable FLMs on
intra-sentential CS data does in general not lead to a performance improve-
ment regarding the MER compared to the baseline system.

• Type I and type II errors: A type I error means that a correct null hypoth-
esis is denied and an incorrect alternative hypothesis is confirmed. A type II
error indicates that a wrong null hypothesis is maintained.

• Significance level: The significance level α indicates an a-priori probabil-
ity, which is determined by the researcher. This probability implies that the
rejection of the null hypothesis, done by a significance test leads to a type I
error. In particular, it can be said that the highest acceptable probability for
an incorrect denial of a correct null hypothesis is α. Typical values for α are
5% , 1% , 0.1% and in rare cases 10%. The selected value depends on the
gravity of a type I error. For example, if the engineers of a plane say that with

56 4. Experiments

Baseline MER Best FLM MER #Hypos Set Error prob.
59.1% 58.6% 100 Dev. 6.8%
60.8% 60.5% 100 Eval. 29.3%
59.1% 58.4% 10k Dev. 6.7%
60.8% 59.8% 10k Eval. 5.1%

Table 4.16: Significance results for our FLM rescoring results.

a probability of 5%, the plane would crash, this would be very problematic.
Even a 0.1% probability of such desaster may be to much. Given the fact that
for our experiment, the gravity of an error is not that severe, we decide on a
value of 5% for α, particularly because 5% is a standard error in case of less
serious consequences.

To evaluate if our improvements are significant, we applied the t-test described
in [43]. We used a paired t-test working on the MER of our baseline and our best
corresponding FLM rescoring experiment for each utterance. We intend to show that
our rescored FLM performs better than the baseline. Consequently, we can specifiy
our hypothesis as µ > µ0. We calculate the significance level, which we achieve
with our experimental result. Our results are significant, if our error probability is
smaller than α = 5%.

Table 4.16 shows our results. Our results would be significant if the error probability
would be below 5% for a significance level of 5%. Since our error probability is higher
than 5% for all experiments, the results are not significant on a lvl of 5%. However,
with the exception of our result on the evaluation set applying 100 hypotheses per
utterance, our results are statistically significant on a 10% level.

4.5.9 Summary of our FLM experiments

We investigated the application of FLMs for Mandarin-English speech data with
intra-sentential CS. The idea behind using these models was to gain information,
which are useful for CS. For FLM factors, we applied the language of a word, POS
tags and a classified code-switch point probability in addition to words. We utilized
FLMs in a N-best rescoring process. Considering our best language model which
contains language ID , POS tags and words as factors, we can reduce our MER from
59.1% to 58.4% on the development set and from 60.8% to 59.8% on the evaluation
set. A relative improvement of 1.18% and 1.64%, respectively is achieved. We
conclude that utilizing additional information sources, like the language ID and POS
tags, may be useful to reach performance improvements on our Mandarin-English
CS data. Our results show that improvements can be obtained by adding language
ID and POS tags as information sources to (factored) language models.

4.5.10 Limits of this Work and Future Prospects

In this subsections, we describe the limits of this work and direct into future prospects.

Limits of our work and future work are as follows:

4.5. FLMs for Recognizing Utterances with intra-sentential CS 57

• Use additional factors: Additional factors can be added to an FLM for
data with intra-sentential CS. Since a common reason for CS is that words
are more available in one language, features related to the language dependent
word availability, difficulty and frequency of use could be added. Using features
related to the word semantic, like described in [19], would also be an option.

• Language model interpolation: One of the limits of this work is that all
created FLMs are exclusively built on the small multilingual training text data,
where we remain with an OOV rate of 7.76% and 8.14% on development and
evaluation set. We did not work with interpolated FLMs since the current
version of the SRI language modeling toolkit [15] does not support writing
FLMs. Frequent interpolation of FLMs from larger text corpora has very
negative effects on the runtime. For future work, it would be reasonable to
include support for writing FLMs into the SRI language modeling toolkit and
develop suitable means for FLMs and language model interpolation. Adressing
this issue would be particularly helpful, if suitable monolingual conversational
and meeting data becomes available. Please note that the English text data,
we had at our disposal was quite different from conversational data.

• CS speech database: A key limit of this work is that we only had 163
minutes of speech data with Mandarin-English CS available, with only one
speaker with a reasonable speaking time. While this data was enough to per-
form speaker adaptation, it is not enough to build a multilingual acoustic
model with English-Mandarin training data. While this may not be neces-
sary, it is to consider that all our results are speaker-dependent. However,
the speaker-dependent CS corpus recorded at the Hong Kong University of
Science and Technology was the only CS corpus, which was available from the
beginning of our work. The Mandarin-English SEAME [44] corpus, which was
recorded in Singapore and Malaysia should be a solution to this problem.

• CS text data: Another issue is the limited availability of CS Mandarin-
English text data. This is related to the nature of CS, since it is often used
spontaneously and rarely used in (formal) writing. CS text data may be gener-
ated cross-lingually and artificially with the help of machine translation tools.
We hope to get a significant performance boost with large code-switched lan-
guage model training data available. This work may be combined with an
ongoing diploma thesis at the Cognitive Systems Lab by Blaicher [45], dealing
with artificial code-switch corpus generation. Another possibility regarding
this issue is to extend the functionality of tools, which crawl the internet for
language model data such as our Rapid Language Adaptation Toolkit (RLAT)
[46] [47], to search for multilingual code switching data. For example, in on-
line chats, it may be possible to obtain suitable data with CS. Furthermore
the RLAT language identification engine could be extended to detect web-
sites containing CS. However, currently we do not know, if there is a relevant
amount of websites containing CS on the world wide web.

• Direct application of FLMs in the decoding process: An extension
of a decoder in a way that it can directly apply CS should result in a more
significant performance increase, than our N-best rescoring experiments, since

58 4. Experiments

N-best rescoring is strongly depending on the baseline language model. Ex-
tending a decoder is a challenging and time consuming task, which was not
the primary focus of this diploma thesis.

• Extend history of code-switch probabilities using additional text
data: Due to the lack of sufficent CS training text data, we created our code-
switch probabilities based upon trigger words (unigrams). Extending the CS
point probability from trigger words to trigger phrases (n-grams) may be more
effective. This extension should be done, if more CS text data is available.

• CS POS tagger: The POS tagging with monolingual taggers for bilingual
data with intra-sentential CS is not optimal. We applied Burgmer’s approach
[24] to utilize available, monolingual taggers and distributed phrases to them.
Creating a truly bilingual tagger should lead to more suitable POS tags and
hopefully to further performance improvement.

• Improving baseline performance with acoustic model and dictionary:
While conversational and meeting data with CS is difficult to recognize, it
may be possible to get a significant performance improvement on the acoustic
model and the dictionary. Combining acoustic model, dictionary and language
model improvements for speech data containing code-switches should lead to
stronger improvements than exclusively working on one of these components.
Nevertheless, this work mainly faced language model issues.

• Extending the work to new languages: CS does not only happen between
Mandarin and English. Therefore, it is interesting to investigate different
language pairs for CS and automatic speech recognition. Other examples of
CS, are English and Spanish [1] and Hindi and English [21].

• Including a language boundary detection system in the ASR process:
The results of other work for language identification and language bound-
ary detection indicates that providing additional information about language
boundaries to the speech recognizer is a way to improve the performance of
speech recognition on CS.

5. Summary

In this thesis we have investigated the use of additional text based features for
automatic speech recognition (ASR) on Mandarin-English speech data containing
intra-sentential code-switching (CS).

We worked on English-Mandarin conversational meeting speech data with 163 min-
utes length.

In the first part, we explored the use of different features for multilingual language
modeling: We predict language and CSP. Our results were evaluated on a develop-
ment set and an evaluation set. The development set was used to select suitable
classifiers for our prediction experiments, and to evaluate factored language model
designs, and speech recognition parameters. The text based prediction of the lan-
guage of a word in an utterance was investigated. Language, part-of-speech (POS)
tags and occurrence features of preceding words in the current utterance are ap-
plied. We obtained an F-measure for the prediction of the language of 0.926 on the
development set and of 0.901 on the evaluation set, respectively. Based upon our
experiments to predict language, we predicted CSPs. We obtained an F-measure
of 0.205 on the development set and 0.300 on the evaluation set. Still we achieve
an improvement compared to random predictions of CSPs, where we calculated an
F-measure of 0.116 on our development set and 0.142 on our evaluation set. From
our prediction experiments, we can conclude that it is useful to utilize language and
POS tag information in the language model on CS data.

In the second part of this work, we included and evaluated POS tags, language
identification (LID) and a class based CSP probability in the language model com-
ponent for ASR. We derived POS features from our text data utilizing POS taggers,
while the LID is processed rule based without error since Mandarin and English
have different scripts. Words were split into classes based upon the likelihood, if
a code-switch follows after each word estimated on our training text data. These
classification was used as our CSP probability. Factored language models were ap-
plied to include these factors and followed by N-best rescoring. We achieved the
highest improvement with factored language models containing LID and POS tags
in addition to words as factors. For evaluating the results, we utilized a mixed
error rate (MER), which is the character error rate (CER) for Mandarin and the

60 5. Summary

word error rate (WER) for English. With the application of our best performing
factored language model, we reduced the MER from 59.1% to 58.4% on the devel-
opment set and from 60.8% to 59.8% on the evaluation set, respectively. This is a
relative improvement of 1.18% and 1.64%, respectively. Our results indicate that
improvements can be achieved by adding language ID and POS tags as information
sources to factored language models, while our code-switch point probability does
not provide MER improvements.

Bibliography

[1] Grosjean F.: Life with Two Languages. An Introduction to Bilingualism. Har-
vard University Press. 1982.

[2] Schultz T., Kirchhoff K.: Multilingual Speech Processing. Academic Press. 2006.

[3] Bilmes J., Kirchhoff K.: Factored language models and generalized parallel
backoff. In Proceedings of HLT/NAACL, pages 4-6. 2003.

[4] Gumperz J.: Discourse Strategies. Cambridge University Press. 1982.

[5] Joshi A.: Processing of sentences with intrasentential code-switching. COLING-
82f. 1982.

[6] Sankoff D., Poplack S.: A Formal Grammar for Code-Switching. Papers in Lin-
guistics, International Journal of Human Communication, 14(1):3(46). 1981.

[7] Kroeger P.: Analyzing Grammar: An Introduction. Cambridge University
Press. 2005.

[8] Bokamba E.: Are there syntactic constraints on code-mixing? World Englishes
8 (3): 277-92. 1989.

[9] Bhatt R.: Code-switching and the functional head constraint. Proceedings of
the Eleventh Eastern States Conference on Linguistics. 1995.

[10] Gebhardt J.: Multilingual Acoustic Model Combination using the Rapid Lan-
guage Adaptation Toolkit (RLAT). student research project. Karlsruhe Insti-
tute of Technology. 2009.

[11] Young S.: Large Vocabulary Continuous Speech Recognition: A Review. 1996.

[12] Huang X., Acero A., Hon H.: Spoken Language Processing, a Guide to Theory,
Algorithm and System Development. Prentice Hall. 2001.

[13] Rosenfeld R.: Two Decades Of Statistical Language Modeling: Where Do We
Go From Here? In Proc. IEEE. 2000.

[14] Bellegarda J.: Statistical language model adaptation: review and perspectives.
Speech Communication 42 (2004) 93-108. 2004.

[15] Stolcke A.: SRILM An extensible language modeling toolkit. In Proceedings
of the 7th International Conference on Spoken Language Processing (ICSLP
2002). 2002.

62 Bibliography

[16] Schultz T.: Multilinguale Spracherkennung - Kombination akustischer Modelle
zur Portierung auf neue Sprachen. doctoral thesis. University of Karlsruhe. 2000.

[17] Lyu D., Lyu R.: Language Identification on Code-Switching Utterances Using
Multiple Cues. In Proceedings of Interspeech. 2008.

[18] Yeh C-F., Huang C-Y., Sun L-C., Lee L-S.: An Integrated Framework for
Transcribing Mandarin-English Code-mixed Lectures with Improved Acoustic
and Language Modeling. Proc. International Symposium on Chinese Spoken
Language Processing (ISCSLP) 2010, pp. 246-250. 2010.

[19] Cao H., P.Ching , Lee T., Yeung Y.: Semantics-based Language Modeling for
Cantonese-English Code-mixing Speech Recognition. Proc. International Sym-
posium on Chinese Spoken Language Processing (ISCSLP) 2010, pp. 246-250.
2010.

[20] Tsai T-L., Chiang C-Y., Yu H-M., Lo L-S., Wang Y-R., Chen S-H.: A Study
on Hakka and Mixed Hakka-Mandarin Speech Recognition. Proc. International
Symposium on Chinese Spoken Language Processing (ISCSLP) 2010, pp. 246-
250. 2010.

[21] Bhuvanagiri K., Kopparapu S.: An Approach to Mixed Language Automatic
Speech Recognition. Proc. Oriental chapter of COCOSDA (The International
Committee for the Co-ordination and Standardization of Speech Databases and
Assessment Techniques). 2010.

[22] Witten I., Frank E.: Data Mining - Practical Machine Learning Tools and
Techniques. Elsevier. 2005.

[23] Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I.: The
WEKA Data Mining Software: An Update. SIGKDD Explorations. 2009.

[24] Burgmer C.: Detecting Code-Switch Events Based on Textual Features.
diploma thesis. Karlsruhe Institute of Technology and Hong Kong University
of Science and Technology. 2010.

[25] Finke M., Geutner P., Hild H., Kemp T., Ries K., Westphal M.: The Karlsruher-
Verbmobil Speech Recognition Engine. In Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing, Munich. 1997.

[26] Toutanova K., Manning C.: Enriching the Knowledge Sources Used in a Max-
imum Entropy Part-of-Speech Tagger. Proc. Joint SIGDAT Conference on
Empirical Methods in Natural Language Processing and Very Large Corpora
(EMNLP/VLC),pp. 63-70. 2000.

[27] Toutanova K., Klein D., Manning C., Singer Y.: Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. Proc. HLT-NAACL, pp. 252-259.
2003.

[28] Toutanova K., Manning D., Morgan W., Tseng H., Rafferty A.:
Stanfort POS Tagger v 1.6 Retrieved 28 September 2008, from
http://nlp.stanford.edu/software/tagger.shtml.

Bibliography 63

[29] Marcus M., Marcinkiewicz M., Santorini B.: Building a Large Annotated Cor-
pus of English: The Penn Treebank. Computational Linguistics,19(2). 1993.

[30] Xue N., Xia F., Chiou F., Palmer M.: The Penn Chinese TreeBank: Phrase
Structure Annotation of a Large Corpus. Natural Language Engineering, 11(2).
2005.

[31] Solorio T., Liu Y.: Learning to Predict Code-Switching Points. Proceedings of
the Conference on Empirical Methods in Natural Language Processing, pages
973-981, Honolulu. 2008.

[32] Solorio T., Liu Y.: Part of Speech Tagging for English-Spanish Code-Switched
Text. Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 1051-1060, Honolulu. 2008.

[33] Quinlan R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Pub-
lishers. 1993.

[34] Cessie S., Houwelingen J.: Ridge Estimators in Logistic Regression. Applied
Statistics. 41(1):191-201. 1992.

[35] Friedman J., R. Tibshirani T. Hastie: Additive Logistic Regression: a Statistical
View of Boosting. Stanford University. 1998.

[36] John G., Langley P.: Estimating Continuous Distributions in Bayesian Classi-
fiers. Eleventh Conference on Uncertainty in Artificial Intelligence. 1995.

[37] Chang C-C., Lin C-J.: LIBSVM - A Library for Support Vector Machines.
http://www.csie.ntu.edu.tw/ cjlin/libsvm/. 2001.

[38] Hsiao R., Fuhs M., Tam Y-C., Jin Q., Schultz T.: The CMU-InterACT 2008
Mandarin Transcription System. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing. 2008.

[39] Kneser R., Ney H.: Improved backing-off for N-gram language modeling. In
Proc. ICASSP, 181-184. 1995.

[40] Kirchhoff K., Bilmes J., Duh K.: Factored Language Model Tutorial. UWEE
Technical Report Number UWEETR-2008-0004. 2008.

[41] Duh K., Kirchhoff K.: Automatic learning of language model structure. In Pro-
ceedings of the International Conference on Computational Linguistics (COL-
ING). 2004.

[42] Young S., Evermann G., Kershaw D., Moore G., Odell J., Ollason D., Valtchev
V., Woodland P.: The HTK Book (for HKT version 3.4.1). Cambridge Uni-
versity Engineering. 2009.

[43] Bortz J., Schuster C.: Statistik fuer Human- und Sozialwissenschaftler.
Springer. 2010.

[44] Lyu D-C., Tan T-P., Chng E-S., H.Li : SEAME: a Mandarin-English Code-
switching Speech Corpus in South-East Asia. In Proc. Interspeech. 2010.

64 Bibliography

[45] Blaicher F.: SMT-based generation for Code-Switching Language Models.
diploma thesis. Karlsruhe Institute of Technology. 2011.

[46] Schultz T., Black A., Badaskar S., Hornyak M., Kominek J.: SPICE: Web
based Tools for Rapid Language Adaptation in Speech Processing Systems.
Interspeech. 2007.

[47] Rapid Language Adapation Toolkit (RLAT). http://csl.ira.uka.de/rlat-dev.

http://csl.ira.uka.de/rlat-dev

	Titelseite
	Contents
	1 Introduction
	1.1 Goal
	1.2 Structure of our Work

	2 Fundamentals
	2.1 Code-Switching
	2.1.1 Attitudes toward Code-Switching
	2.1.2 Reasons for Code-Switching
	2.1.3 Mechanics of Code-Switching

	2.2 Automatic Speech Recognition Basics
	2.2.1 Language Model
	2.2.2 Mixed Error Rate

	2.3 Related Work
	2.4 Evaluation Measures for Classification

	3 Database and Tools
	3.1 Mandarin-English Code-Switching Database
	3.1.1 Database Split

	3.2 Waikato Environment for Knowledge Analysis
	3.3 SRI Language Modeling Toolkit
	3.4 Janus Recognition Toolkit
	3.5 Part-of-Speech Tagger

	4 Experiments
	4.1 Part-of-Speech Tagging
	4.2 Text Based Prediction of LID and Code-Switch Points
	4.2.1 Motivation of our Prediction Experiments
	4.2.2 Related Work
	4.2.3 Predicting Language
	4.2.4 Evaluation of Predicted Language Identification
	4.2.5 Features for Predicting the Language of a Word
	4.2.6 Predicting Language Identification with Omitted Language Identification Features
	4.2.7 From Predicting Language Identification to Predicting Code-Switch Points
	4.2.8 Evaluation of Predicted Code-Switch Points
	4.2.9 Summary of our Prediction Experiments

	4.3 Baseline Speech Recognition System
	4.4 Factored Language Models - Fundamentals
	4.4.1 Backoff for FLMs
	4.4.2 Generalized Backoff
	4.4.3 FLM Training Data Format
	4.4.4 FLM File
	4.4.5 Data-driven Search of FLM Parameters

	4.5 FLMs for Recognizing Utterances with intra-sentential CS
	4.5.1 N-Best Rescoring with Factored Language Models
	4.5.2 FLM Design
	4.5.3 N-Best Rescoring Parameters
	4.5.4 FLM N-Best Rescoring Framework
	4.5.5 Evaluation of FLM Designs using N-Best Rescoring
	4.5.6 Effect of the Number of Generated Hypotheses per Utterances
	4.5.7 Oracle Experiment
	4.5.8 Significance of our Results
	4.5.9 Summary of our FLM experiments
	4.5.10 Limits of this Work and Future Prospects

	5 Summary
	Bibliography

