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Zusammenfassung

In dieser Diplomarbeit wird der Einsatz von automatischen Segmentierungsverfah-
ren und der Modelltransfertechnik für die Entwicklung eines Erkennungssystems
für menschliche Bewegungen untersucht. Komplexe menschliche Bewegungen wer-
den mit Hilfe von Hidden-Markov-Modellen (HMM) modelliert. Die Trainingsdaten
für Modelle primitiver Bewegungseinheiten werden durch die Segmentierung von
Sequenzen komplexer Bewegungen gewonnen. Da die manuelle Segmentierung mit
einem großen Zeit- und Kostenaufwand verbunden ist, werden häufig automatische
Segmentierungsverfahren eingesetzt. In dieser Arbeit werden zwei automatische Seg-
mentierungsverfahren untersucht. Das erste Verfahren ist ein überwachtes, HMM-
basiertes Segmentierungsverfahren, welches den Einsatz von einer geringen Menge an
segmentierten Bewegungen für das Training voraussetzt. Das zweite Verfahren ist ein
unüberwachtes Segmentierungsverfahren, welches auf die Hauptkomponentenanlyse
(Principal Component Analysis, PCA) basiert und keine Trainingsdaten voraussetzt.
Darüber hinaus wird der Einsatz der Modelltransfertechnik untersucht. Diese Tech-
nik erlaubt die Übertragung von Modellen eines existierenden Erkennungssystems
als Modelle für ähnliche primitive Bewegungseinheiten in einem neuen Erkennungs-
system.

Die mit Hilfe der oben genannten Verfahren entwickelten Erkennungssysteme wer-
den durch den Einsatz von mehreren Datensätzen evaluiert. Die Datensätze wurden
im Rahmen des Sonderforschungsbereichs 588 - Humanoide Roboter akquiriert. Sie
beinhalten Bewegungen, wie sie bei der Arbeit in einer Küche typischerweise vor-
kommen können.

Eine erste Evaluierung des Erkennungssystems mit manuell segmentierten und tran-
skribierten Daten führte zur Folgerung, dass für die Leistung eines Erkennungssy-
stems die Anzahl von einfach zu gewinnenden Transkriptionen wichtiger ist als die
Anzahl von aufwendig zu gewinnenden Segmentierungen. Ein Erkennungssystem
initialisiert mit wenig segmentierten Daten kann sogar ein mit mehr Daten initiali-
siertes System minimal übertreffen, obwohl beide Systeme mit gleicher Anzahl von
transkribierten Daten trainiert werden.

Die HMM-basierte Segmentierungsmethode wird mit Hilfe eines Baseline-Systems
durchgeführt. Die Leistung des Baseline-Systems wird mit der Leistung des mit Hilfe
von automatisch segmentierten Daten entwickelten Systems verglichen. Die Experi-
mente zeigen, dass eine absolute Leistungssteigerung von bis zu 9,4% Fehlerrate mit
einem von zwei verwendeten Datensätzen festzustellen ist.

Die Evaluierung der PCA-basierten Segmentierungsmethode führt zu guten Ergeb-
nissen. Dabei ist eine Fehlerrate von bis zu 25,52% erreicht. Die Verteilung der au-
tomatisch gewonnenen Bewegungseinheiten unter den komplexen Bewegungen wird
verwendet um eine Klassifizierung von komplexen Bewegungen zu ermöglichen. Da-
mit wird eine Fehlklassifikationsrate von bis zu 9,6% erreicht.

Die Evaluierung der Modelltransfertechnik führt zur Folgerung, dass eine anschlie-
ßende Adaption mit Transkriptionsdaten notwendig ist um eine relativ niedrige Feh-
lerrate zu erreichen.





Abstract

In this thesis the development of a human motion recognition system using auto-
matic segmentation and model transfer is investigated. Complex human motions
are modeled using Hidden Markov Models (HMMs) for primitive motion units. The
training data for the motion unit models is provided by segmenting complex motion
sequences into primitive motion units. However, manual segmentation is too time
and cost consuming. Hence, two automatic segmentation methods are presented.
The first one is an HMM-based supervised automatic segmentation method which
requires a certain amount of pre-segmented training data. The second one which
is an unsupervised automatic segmentation method based on Principal Component
Analysis (PCA) does not require any training data. Furthermore, the application of
the model transfer technique is investigated in which motion models of an existing
recognition system are transferred to a target recognition system in order to be used
for recognizing similar motion units.

The recognition systems developed by using the above mentioned approaches are
evaluated by using several motion data sets acquired by the Collaborative Research
Center 588 - Humanoid Robots. The data sets consist of motions as they appear in
kitchen tasks and food preparation scenarios.

An initial evaluation of the recognition system using manually segmented and tran-
scribed data show that the number of less expensive transcriptions for the perfor-
mance of the recognition system is more important than the number of expensive
segmentations. A recognition system initialized using less segmented data might
outperform a system initialized using more data although both systems are trained
by using the same amount of transcribed data.

The HMM-based segmentation method is carried out by using a baseline system.
The performance of the baseline system is compared to the performance of the recog-
nition system developed by using automatically segmented data for training. With
one of two data sets used for the evaluation, an absolute performance improvement
up to 9.4% error rate is achieved.

The PCA-based segmentation method is successfully applied. A performance up to
25.52% error rate is achieved. The distribution of automatically obtained motion
units among complex motions is applied in order to enable a classification of complex
motions. A classification error rate up to 9.6% is achieved.

Further experiments show that the model transfer technique only performs well when
an additional adaptation using transcription data is applied.
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1. Introduction

Human motion recognition (HMR) has become an important research area in the
field of robotics and human–machine interaction. This is due to the fact that HMR
is required in many applications, especially in the field of robotics. Human motion
recognition is not only essential for recognizing the intention of humans, but also
essential for learning human-like behavior. Programming by Demonstration [Dil04]
is an important example where human motion recognition is applied.

The challenges behind human motion recognition are enormous; starting with the
capturing of motion data and its preprocessing, through the segmentation of complex
motion sequences into primitive motion units, and all the way up to the modeling
of motion units, the training of motion unit models, and the recognition of modeled
motion units in observation data. For all these tasks a lot of effort has to be spent
in order to achieve a reliable recognition.

The most important issue in HMR is to find an appropriate modeling technique for
modeling motion trajectories. Human motions are often represented as time series
data in which a certain time and shape variance in the trajectory is always comprised.
This is due to the fact that every execution of a human motion is unique even if
it is of the same motion type and it is performed by the same person. Because of
the variance in motion data statistical modeling is attractive in order to be applied
for modeling human motions. The most well-known and most applied statistical
models in the field of HMR are Hidden Markov Models (HMMs). In fact HMMs are
successfully applied in many works concerned with modeling human motions. Their
statistical characteristics allow them to deal with time and shape variance and they
are also suitable for modeling time series data like human motions.

Additional to the consideration about the modeling technique used in the recognition
system the abstraction level of representation at which the motions are modeled has
to be considered very well. There are different levels of abstraction that can be
applied for modeling human motions. Motion models at a high level of abstraction
are more complex than motion models at a lower abstraction level and they also have
a higher information content. Models at a high abstraction level usually represent
complex motions like ”pouring water” whereas models at a low abstraction level
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represent primitive motion units within complex motions, e.g. ”take glass” or ”take
bottle”.

Modeling at a higher abstraction level requires an enormous amount of training
data. However, the collection of human motion data is associated with a great
effort. Therefore, the modeling of primitive motions at a lower abstraction level
becomes more attractive since a smaller amount of data is needed to train robust
models. Complex motions can then be modeled by concatenating models of primitive
motions. An additional advantage of this modeling technique is the flexibility in
composing and recognizing new complex motions using a relatively small number of
existing elementary primitive motion models.

In order to apply motion modeling at a low abstraction level motion data segmenta-
tion becomes an essential task in which motion data sequences at a higher abstraction
level have to be segmented into primitive motion units. However, this task is also
associated with an enormous time and cost effort since it is generally carried out
manually.

The effort evolved by the manual segmentation task can be reduced or it can be
completely eliminated by applying different approaches. A common approach is
to apply automatic segmentation methods instead of manual segmentation. How-
ever, developing automatic segmentation methods is very challenging. In particular,
unsupervised automatic segmentation algorithms which provide a similar segmen-
tation into meaningful motion units as provided by manual segmentation are hard
to design. They are, however, still desirable because they do not require any man-
ually segmented training data. On the contrary supervised model-based automatic
segmentation approaches require a certain amount of manually segmented training
data, but they are able to provide a similar segmentation as provided by the manual
segmentation.

Another approach that can be applied to overcome the manual segmentation effort
is known as Cross-Language Transfer (CLT) in the field of Automatic Speech Recog-
nition (ASR). CLT is based on the idea of using existing phoneme models of one
or more source languages to built a recognition system for a new target language.
For this, expert knowledge can be applied to assign phoneme models in the source
recognition systems to similar phonemes in the target language. In this work the
CLT is referred to as the model transfer technique.

1.1 Objectives

The main objective of this work is to develop a robust human motion recognition
system, and at the same time reduce or rather overcome the great effort associated
with the manual segmentation task. For this, three approaches are investigated and
evaluated by using three motion data sets. The first two approaches are automatic
segmentation methods. The third one is the model transfer technique. However, the
first experiments are carried out to investigate the performance of the recognition
system using different amounts of segmented data for initialization and different
amounts of transcribed data for training.

The first automatic segmentation method is a supervised model-based segmentation
method. In this method the segmentation is carried out by using an HMM-based
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recognition system as a baseline system. The hypotheses provided by the baseline
system are considered as segmentation. Furthermore, the application of confidence
measures is investigated in order to enable a confidence-based segmentation filtering.
This can be applied to discard bad segments in the hypotheses. This segmentation
method requires a certain amount of manually segmented training data.

The second automatic segmentation method is unsupervised. It is based on the
Principal Component Analysis (PCA). This segmentation method does not require
any manually segmented data which extremely reduces the development effort for
the recognition system. The segmentation method consists of two main steps. In the
first one a motion data sequence is segmented based on the first principal component
of the motion sequence. In the second step the calculated segments are labeled by
using the k-means clustering algorithm.

Furthermore, the model transfer technique is investigated by utilizing motion unit
models of an existing recognition system to recognize similar motion units in a new
target motion data set. This way the target motion data set does not have to be
segmented manually.

1.2 Structure of this Work

This work consists of seven chapters. In the first one an introduction of this thesis
and its objectives is given. In chapter 2 an overview of existing works related to
the topic of this thesis is given. Chapter 3 describes how the human motion data
for this work is acquired, represented, and what kind of information it comprises.
Also in this chapter the data sets used in this work and their manual segmentations
are presented. In chapter 4 the HMM-based HMR approach is described, starting
with an overview about the theory of HMMs. Furthermore, a human motion recog-
nition system to be applied as a baseline system is introduced. This is followed by
experiments for the evaluation of different baseline and recognition systems using
different data sets. Chapter 5 introduces and explains the automatic segmentation
methods developed and investigated in this work. Furthermore, the experiments
carried out to evaluate the segmentation methods are presented. In chapter 6 the
model transfer technique is explained and the experiments conducted for its evalu-
ation are presented. In chapter 7 a summary and a conclusion about this work are
given. Furthermore, some aspects of future work are discussed.
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2. Related Work

HMM-based Modeling and Recognition of Human

Motions

For years, many scientists have investigated and discussed different approaches and
methods for modeling and recognizing human motions. The most widely used mod-
eling techniques are based on HMMs. This is due to the fact that HMMs are con-
venient for modeling time series data. Furthermore, their statistical characteristics
enable them to deal with time and shape variance that occurs in motion data.

The HMM-based motion modeling approaches in the literature differ in the type
of HMMs applied for modeling, the type of motion data representation, and the
abstraction level of representation of motion data [MHK06] [KKUG07].

A simple approach based on discrete HMMs for modeling and recognizing a small
number of primitive motions represented in 2D image sequences is presented in
[YOI92]. The HMMs are applied for modeling and recognizing six primitive tennis
motions. The feature vectors are extracted from the pixel values of the images and
vector quantization is applied in order to partition the feature space. The quantized
feature vectors which represent the different feature space regions are then applied
as output symbols for the discrete HMMs. This approach, however, is probably
limited when it comes to modeling and recognizing a larger number of primitive
motions. Problems could be the low resolution of the extracted feature vectors,
the quantization of the feature space, and the lack of a body-model-based feature
extraction. In addition, the application of 2D motion images without a body-model
based feature extraction makes the recognition of primitive motions from different
viewing angles difficult.

Another approach which allows modeling and recognizing a larger number of primi-
tive motions is introduced by Mori et al [MSSS04]. In this approach the recognition
system is based on so-called action models each consisting of a continuous HMM and
a feature extraction filter which focuses attention on the typical motion features of
the corresponding motion. The feature vectors consist of 36 3D spatial informa-
tion of different positions in the whole human body. The recognition system has a



6 2. Related Work

hierarchical structure that allows the recognition of primitive motions in different
levels of abstraction. The motions at the top level of abstraction are generalizations
of special motions at the lower levels of abstraction. The recognition is processed
from the top to the lower levels where more details about the primitive motions
are comprised. The authors also adopt a concept based on confidence measure to
recognize novel motions. Primitive motions with low confidence values are classified
as new motions.

The two approaches mentioned above are only applied to model and recognize prim-
itive motions. However, in real-life situations the recognition of continuous complex
motions consisting of several primitive motions is required. In [VM99] an approach
for the continuous recognition of American Sign Language (ASL) is presented. The
approach is based on modeling signs by using concatenations of sign phoneme mod-
els in order to allow a continuous recognition of the ASL. The phonemes are modeled
by using parallel HMMs. This is due to the fact that using two hands for performing
sign language leads to simultaneous occurrences of phonemes. The authors apply
3D motion data to model 89 phonemes for the right hand and 51 phonemes for the
left hand. The phonemes are used to model 22 signs.

Segmentation of Human Motion Data

Modeling techniques such like the one presented in [VM99] require the segmentation
of complex motions into primitive motions. Since manual segmentation is associ-
ated with a great effort, automatic segmentation methods become very interesting.
Automatic segmentation methods can be divided into supervised and unsupervised
segmentation methods.

Supervised model-based automatic segmentation methods in HMR are hardly known.
However, in the field of ASR and Automatic Speech Synthesis many supervised
model-based algorithms for automatic segmentation and automatic transcription of
speech data have been investigated.

An HMM-based method used for segmenting speech data for the purpose of concate-
native speech synthesis is presented in [KC02]. The method is applied to compute
phoneme boundaries in speech data by using an HMM-based recognition system in
the so-called forced alignment mode. Kim and Conkie [KC02] use speaker inde-
pendent HMMs to prepare seed phone labels which are then used to train speaker
dependent HMMs. The speaker dependent HMMs are used to provide the segmenta-
tion task. The HMMs are improved iteratively by using the segmentation of previous
iterations. This HMM-based segmentation method is proven to be consistent and ac-
curate, especially when certain post-processing methods are applied to improve the
accuracy of the segmentation results. In [KC02] the segmentation system is com-
bined with a so-called spectral boundary correction to improve the segmentation
results. For this, spectral features are used to detect spectral mismatches between
two successive concatenated units.

The segmentation method in [KC02], however, requires the transcription of speech
data to allow the correct concatenation of phoneme models for the given speech
data in order to enable the decoding in the forced alignment mode. An automatic
segmentation and transcription method based on HMMs for speech data is presented
in [KW98] and [ZC98]. In both works the segmentation method is based on the idea
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of creating initial HMMs by using a certain amount of transcribed data and of
using the initial HMMs to decode the available untranscribed data. In a subsequent
step, the hypotheses provided by the decoding process are analyzed for correctness
by using a confidence measure. The most confident hypotheses are accepted as
transcriptions. In [KW98] Kemp and Waibel apply a confidence measure based
on the a-posteriori gamma probability for words. Zavaliagkos et al. [ZC98] use a
generalized linear model (GLM) to estimate confidence values.

The automatic segmentation methods mentioned above require a certain amount of
pre-segmented and pre-labeled data. Unsupervised automatic segmentation methods
manage the segmentation task without the need of pre-segmented and pre-labeled
data. Unsupervised automatic segmentation methods for human motion data are
discussed in many works. The common approach is to derive a segmentation feature
from the multi-dimensional motion data and set segment boundaries in the segmen-
tation feature trajectory where local minima and/or maxima, or zero-crossings are
found.

Fod et al. [FMJ02] present an approach based on segmenting motion data consisting
of angular velocities. The velocity sequences of each joint are segmented separately.
For this, the zero-crossing method is applied to determine the segment boundaries.
A total segment boundary over all joints is determined by finding a region where
multiple zero-crossings emerge at the same time or nearly the same time. This
approach, however, poses some problems. Multiple zero-crossings of some joints can
emerge within one segment which leads to segment overlapping. Furthermore, some
primitive motions characterized by a small number of active joints and multiple
simultaneous zero-crossings within the motion are wrongly segmented. Hence, Fod
et al. introduce another algorithm which they call the z-algorithm in order to
improve the segmentation task. The algorithm is based on the sum z of the squares
of angular velocity and it sets segment boundaries whenever z is lower than an
empirically derived threshold.

Wang et al. [WLZ05] consider in their approach expert knowledge from the field
of biomechanics. They consider the fact that human motions do not take place
at a constant speed and that some effects, e.g. the spring effect of muscles, allow
a biological system to minimize energy. Therefore, they decide to consider the
torque as segmentation feature. In order to solve the multi-dimensional problem
they calculate the torque of the complete body by simply summing the torque of all
joints. The segment boundaries are set at local minima of the overall torque.

In their work Jenkins et al. [JM04] present a segmentation method called kinematic
centroid segmentation (KCS). In this method a kinematic substructure of the human
body, e.g. the arm, is considered as a pendulum. This can be seen as a spatial
segmentation of the human body where interrelated joints or degrees of freedom
(DOF) are grouped as a pendulum. The segmentation task is based on the centroid
of the 3D positions of all involved elements with respect to a so-called base feature,
e.g. the shoulder joint. The segmentation trajectory is derived by calculating the
Euclidean distance between the centroid value in the first frame and the centroid
values in the following frames. A segment boundary is set at frame t where the
Euclidean distance is maximum. The same procedure is repeated in order to segment
the rest of the motion sequence. For this, frame t+ 1 is set as the first frame.
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Barbič et al. [BSP+04] present three segmentation approaches which are quite dif-
ferent from the above mentioned ones. The first two approaches are based on the
principal component analysis (PCA). The authors exploit the data reduction proper-
ties of the PCA and show that distinct motion behaviors occur in distinct subspaces
of the overall feature space.

In the first approach the PCA is applied to calculate the subspace in which the
first motion behavior in the complex motion sequence is best represented. This is
done by using a certain number of frames that are assumed to belong to the first
motion behavior. In the next step adjacent frames are iteratively projected into the
calculated subspace. The authors assume that if the additional frames belong to
the same behavior then the projection error stays minimal, and if the additional
frames belong to another behavior the projection error increases rapidly. This fact
is exploited to set a segmentation boundary where the projection error increases
rapidly. The entire process is repeated on the remaining motion sequence.

The second approach is based on a probabilistic extension of the PCA, namely the
probabilistic principal component analysis (PPCA). The PPCA is used to model
a distinct motion behavior with a Gaussian distribution. The number of frames
used for the estimation of the Gaussian distribution is increased iteratively. In each
iteration the Mahalanobis distance of adjacent frames to the estimated Gaussian
distribution is calculated. The algorithm sets a segment boundary where the Maha-
lanobis distance becomes radically high.

Under the assumption that the frames of a simple motion form a cluster and that
such a cluster can be modeled with a Gaussian distribution, Barbič et al. apply a
Gaussian Mixture Model (GMM) to model the entire motion sequence. This way
different simple motions are assigned to different Gaussian distributions of the GMM.
The boundaries between the Gaussian distributions are then chosen as segmentation
boundaries.

The Model Transfer Technique

Besides automatic segmentation techniques, there are other methods that can be
applied to overcome the expensive intervention of humans in preparing training
data. As mentioned in the introduction, CLT is one of these methods which is
based on the idea of using phoneme models of an existing recognition system for a
certain language to recognize phonemes of another target language without using
training data of the target language.

In [SW01] Schultz and Waibel investigate the application of the CLT technique
for recognizing Swedish. For this purpose the application of language dependent
and independent acoustic models is applied. In the case of language dependent
acoustic models, seven recognition systems of different languages are utilized. In the
case of language independent models, acoustic models for the International Phonetic
Alphabet (IPA) are used. These models are trained by using speech data of different
languages. The phoneme mapping from the target language to the source languages
is carried out by applying expert knowledge. The authors also investigate a data-
driven mapping approach by using transcriptions of a certain amount of the target
language training data. The resulting transcriptions for the target language is used
in a following step to bootstrap a new recognition system.
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In [VKS10] Vu et al. extend the CLT technique by a subsequent unsupervised
training. Their goal is to build a recognition system for Czech without using tran-
scriptions of the speech data. In the first step they apply the CLT technique to build
the recognition system by utilizing existing acoustic models for Russian, Bulgarian,
Polish, and Croatian. The resulting system is used to decode the un-transcribed
Czech speech data. The hypotheses are analyzed for correctness by applying a so-
called multilingual a-stabil confidence measure. The confidence measure is based on
alternative hypotheses of all involved source languages. According to the confidence
measure, the best hypotheses are extracted to be used as training data to build a
new recognizer for the target language. The recognizer is improved iteratively by
repeating the decoding and the training tasks.
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3. Human Motion Data

3.1 Acquisition and Representation of Human Mo-

tion Data

Human motions are generally represented in form of time series data which contain
a certain kind of motion information at certain time instances. Each time instance
in time series data is called frame which is comparable to a frame in animations,
i.e. the time series data is a set of consecutive frames, each containing information
about a human motion at a certain time instance. The time line of human motion
data is then given by the number of frames.

The sampling rate, i.e. the number of frames per second (fps) and the kind of
information comprised in a frame is dependent on the task the motion data is used
for. Film projectors, for instance, normally work at a frame rate of 24 fps. In some
technical applications, however, a higher frame rate is necessary.

The information comprised in a frame differs from application to application, but the
most common kinds of information stored in a frame are joint angles or 3D positions
of a human body. 3D marker positions, for instance, are usually derived by using
optical motion capture systems which are based on infrared cameras that are able
to capture the infrared light reflected by markers. Theoretically, only two cameras
are required in order to capture the 3D positions of markers. In practice, however,
a complex capturing system with a static capturing setup and a larger number of
cameras is needed to acquire high-quality motion data.

Joint angle information is often reconstructed out of the 3D marker position cloud
by using a virtual kinematic body model of the subject’s body. The 3D marker
positions are mapped to corresponding positions in the kinematic body model by
minimizing the distances between the marker positions in space and the positions
in the body model [Ste99]. Once the marker positions are mapped to the kinematic
body model, angle values of different joints in the body model can be reconstructed.

The dimension of motion data is dependent on the number of markers attached to
the human body or the DOF of the joints considered in the kinematic body model.
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Every frame contains either one angle value for each DOF or three values for the
XYZ-positions of each marker.

The motion data applied in this work are human motions as they appear in kitchen
tasks and food preparation scenarios, e.g. ”pouring water”and ”grating apple”. They
include motions concerned with taking kitchen objects or food from a counter top,
working with them and putting them back to their places. The motion data sets are
acquired by the Collaborative Research Center 588 - Humanoid Robots.

The motions are captured and recorded with a Vicon motion capture system. For
this purpose, 10 Vicon cameras are used to capture the infrared light reflected by 35
markers attached to the subject’s upper body, head and arms. The Vicon system
outputs 3D positions and labels of the markers at a frame rate of 100 fps.

Figure 3.1: The motion data processing chain. Captured 3D marker positions are
mapped to a body model. This allows the reconstruction of joint angle information.

The marker-based motion information captured by the Vicon system is utilized in
a following step to reconstruct the joint angle information. For this purpose, an
optimization-based motion mapping is applied in which marker position trajectories
are used to determine the parameters of a kinematic body model in order to enable
the reconstruction of the corresponding joint angle trajectories. The motion mapping
is achieved by minimizing the distances between the marker positions in space and
the corresponding positions in the kinematic body model. The mapping task outputs
angle information of 24 DOF, i.e. the dimensionality of the motion data is 24. For
the reconstruction of the joint angle information a rigid multi-body model of the
human skeleton was applied that consists of the following 24 DOF (global positions
and orientations are excluded):

• Arm Joints

◦ Wrist Joint (2 · 2 DOF)

◦ Elbow Joint (2 · 2 DOF)

◦ Shoulder Joint (2 · 3 DOF)



3.2. Motion Data Sets 13

• Lower Neck Joint (2 DOF)

• Upper Neck Joint (3 DOF)

• Lower Spine Joint (2 DOF)

• Upper Spine Joint (3 DOF)

In figure 3.1 the motion data processing chain applied in order to carry out the joint
angle reconstruction is shown. The frame rate of the resulting joint angle data is
lowered to 20 fps.

3.2 Motion Data Sets
The data used in this work is organized in three different data sets. The data sets
differ from each other in respect to the way the motions are performed, the way
the kitchen objects are positioned, and the subjects who perform the motions. In
the following sections the data sets and their characteristics are explained in more
detail.

Data Set A

Data set A consists of 10 complex motion types performed by a male subject. Each
complex motion type is recorded 50 times. The total number of motion sequences
is 500. The average length of a motion sequence in this data set is 302 frames. This
corresponds to a duration of about 15 seconds.

Data set A is characterized by motions that contain artificially added short pauses
between certain primitive motions. This is done in order to emphasize the transition
between two primitive motions within a complex motion. In the complex motion
”pouring water”, for instance, a short pause between the primitive motions ”take
glass” and ”take bottle” exists. Another characteristic is the sequential order of
primitive motions. Primitive motions are strictly performed one after another, i.e.
a started primitive motion is completely performed before another primitive motion
is started. The third characteristic is the static positioning of kitchen objects. Each
object is positioned at the same place before and after the performance of the motion
(see figure 3.2). Data set A consists of the following complex motion types:

• Rolling pastry

• Pouring water

• Slicing apple

• Grinding coffee

• Sweeping

• Grating apple

• Stirring

• Cutting bread

• Cutting apple

• Mashing potatoes



14 3. Human Motion Data

Data Set B

Data set B consists of 5 complex motion types. Each complex motion type is
recorded 20 times. The total number of motion sequences is 100. The average
length of a motion sequence in this data set is 300 frames which corresponds to a
duration of 15 seconds.

As in data set A, the motions in data set B are characterized by the sequential order
of primitive motions and the static positioning of kitchen objects as shown is figure
3.3. The difference to data set A is that the motions in data set B are performed
fluently without artificial pauses between primitive motions. Data set B consists of
the following complex motions which are performed by a female subject:

• Pouring water

• Grating apple

• Stirring

• Cutting apple

• Mashing potatoes

Data Set C

The motions in data set C are performed by the same female subject that performed
the motions in data set B. The motions are performed fluently, but the order of prim-
itive motions is in some cases semi-parallel, i.e. some primitive motions that require
only the action of one hand or arm are started before another primitive motion
performed by the other hand or arm is finished. Complex motions with this charac-
teristic are more realistic and they occur more often in real-life situations. Another
characteristic of data set C is the dynamic positioning of kitchen objects. The po-
sitions of kitchen objects vary between different recording sessions. Altogether, five
different positions on the counter top are allowed. The different positions are shown
in figure 3.4. Data set C consists of the following complex motions:

• Pouring water

• Grating apple

• Stirring

• Mashing potatoes

Each of the above mentioned 4 complex motions is performed by using 5 different
positioning variations of kitchen objects. Each variation is recorded 5 times. The
total number of motion sequences is 100. The average length of a motion sequence
in this data set is 207 frames. This corresponds to a duration of about 10 seconds.
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Figure 3.2: The counter top for the performance of motions in data set A: 1) Working
spot, 2) Apple, 3) Bowl, 4) Glass, 5) Bottle, 6) Bread knife, 7) Knife, 8) Rolling pin,
9) Grinder, 10) Spoon, 11) Masher 12) Grater, 13) Slicer, 14) Broom, 15) Dustpan.

Figure 3.3: The counter top for the performance of motions in data set B: 1) Working
spot, 2) Apple, 3) Bowl, 4) Bottle, 5) Knife, 6) Spoon, 7) Masher, 8) Grater.

Figure 3.4: The counter top for the performance of motions in data set C: 1) Working
spot, 2) Front right, 3) Front left, 4) Center, 5) Back right, 6) Back left.
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3.3 Manual Segmentation of Motion Data

In the last section the motion data sets applied in this work were presented. The
motion data, however, is provided as complex motion sequences. The motion se-
quences have to be segmented into motion units in order to allow motion modeling
at a lower abstraction level. In this section the manual segmentation of the complex
motion sequences into motion units is introduced.

In order to obtain a good segmentation specific requirements have to be followed.
An important requirement for the segmentation task is consistency. This can be
complied by defining strict rules based on expert knowledge which have to be followed
by all operators.

Other important requirements relate to the information content of motion units,
and their size which affects their flexibility in composing complex motions. Motion
units have to comprise unique and meaningful information and at the same time
they have to be small enough in order to be flexibly utilized in composing complex
motions. This leads to a problem since a very small motion unit may not contain
unique and meaningful information which makes it unusable for modeling. On the
other hand a motion unit with too much information content is too special and too
long which makes it difficult to be built into different kinds of complex motions.
Therefore, a balance between the two requirements has to be found.

The manual segmentation applied in this work is carried out as presented in the next
sections. As mentioned in section 3.2, the complex motions in data set A contain
artificial pauses between certain primitive motion units. This pauses are referred to
as ”rest position”. Cyclic motion units, e.g. ”cut” appear only once in the following
description of the segmentations. These motion units, however, may appear several
times in the segmentation of the real motion sequences. This is dependent on the
duration of the cyclic motion. Since the semi-parallel motion units in data set C
are not completely overlapped, the segmentation of such motion units is carried out
sequentially as done with data set A and B.

Manual Segmentation of Data Set A

• Rolling pastry: Rest position - Take rolling pin - Rest position - Grasp rolling
pin with both hands - Roll - Release rolling pin - Rest position - Put rolling
pin back - Rest position

• Puring water: Rest position - Take glass - Rest position - Take bottle - Pour -
Put bottle back - Rest position - Put glass back - Rest position

• Slicing apple: Rest position - Take Slicer - Take apple right hand - Slice - Put
apple back right hand - Put Slicer back - Rest position

• Grinding coffee: Rest position - Take grinder - Grasp grinder - Grind - Release
grinder - Put grinder back - Rest position

• Sweeping: Rest position - Take broom and dustpan - Sweep - Put back broom
and dustpan - Rest position

• Grating apple: Rest position - Take grater - Take apple right hand - Grate -
Put apple back right hand - Put grater back - Rest position
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• Stirring: Rest position - Take bowl - Rest position - Take spoon - Grasp bowl
- Stir - Release bowl - Put spoon back - Rest position - Put bowl back - Rest
position

• Cutting bread: Rest position - Take bread - Rest position - Take knife - Grasp
bread - Cut bread - Release bread - Put knife back - Rest position - Put bread
back - Rest position

• Cutting apple: Rest position - Take apple left hand - Rest position - Take knife
- Grasp apple - Rest position - Cut apple - Release apple - Put knife back -
Rest position - Put apple back left hand - Rest position

• Mashing potatoes: Rest position - Take bowl - Rest position - Take masher -
Grasp bowl - Mash - Release bowl - Put masher back - Rest position - Put bowl
back - Rest position

Manual Segmentation of Data Set B

• Pouring water: Rest position - Take bowl - Take bottle - Pour - Put bottle back
- Put bowl back - Rest position

• Grating apple: Rest position - Take grater - Take apple right hand - Grate -
Put apple back right hand - Put grater back - Rest position

• Stirring: Rest position - Take bowl - Take spoon - Stir - Put spoon back - Put
bowl back - Rest position

• Cutting apple: Rest position - Take apple left hand - Take knife - Grasp apple
- Cut apple - Release apple - Put knife back - Put apple back left hand - Rest
position

• Mashing potatoes: Rest position - Take bowl - Take masher - Mash - Put
masher back - Put bowl back - Rest position

Manual Segmentation of Data Set C

• Pouring water: Rest position - Take bowl from position X - Take bottle from
position Y - Pour - Put bottle back on position Y - Put bowl back on position
X - Rest position

• Grating apple: Rest position - Take grater from position X - Take apple from
position Y - Grate - Put apple back on position Y - Put grater back on position
X - Rest position

• Stirring: Rest position - Take bowl from position X - Take spoon from position
Y - Stir - Put spoon back on position Y - Put bowl back on position X - Rest
position

• Mashing potatoes: Rest position - Take bowl from position X - Take masher
from position Y - Mash - Put masher back on position Y - Put bowl back on
position X - Rest position
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As mentioned in section 3.2 each motion type is performed by applying 5 different
positioning variations of the kitchen objects. X and Y accept one of the following
values, where X is not equal Y:

• Front right

• Front left

• Center

• Back right

• Back left

The object positions can be seen in figure 3.4.



4. HMM-based Human Motion
Recognition

HMR is a very complex task that requires the consideration of many problems and
issues. The modeling method used to model human motions is an important and
essential issue that has to be considered very well. Human motions are characterized
by their uniqueness. Even professional athletes would not be able to repeat the same
motion exactly, i.e. there is a certain time and shape variance in human motions.
This characteristic leads to the preference of applying statistical methods for mod-
eling human motions. In this way the statistical properties enable the recognition
system to deal with time and shape variance. An important example of statistical
models are HMMs.

HMMs are widely used in the field of machine learning particularly in the field
of HMR and also in ASR. They are convenient for modeling time series data and
their statistical characteristics make them powerful for modeling stochastic processes
enabling them to deal with time and shape variance in signal data. These are
exactly the characteristics needed to model human motion signals since they are
also represented as time series and they vary due to their unique execution property.
The effectivity in applying HMMs for HMR is shown in many works, e.g. [GKWS09].

In the next section a brief introduction about the theory of HMMs is given.

4.1 Hidden Markov Models

In his well known tutorial [Rab89] about HMMs, Rabiner distinguishes between
two categories of models which can be used for modeling signals. The first one is
the category of deterministic models that consider specific information about the
signal properties, e.g. the signal might have the form of a sine wave. In this case
the specification of the signal model is previously known and only the parameters
of the signal model like the amplitude and frequency have to be determined. The
second category of signal models is the category of statistical models. Here, it can be
assumed that the signal can be characterized as a random process, e.g. a Gaussian
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process. After identifying the corresponding statistical model to the given signal the
parameters of the model have to be determined or rather estimated.

Hidden Markov Models belong to the category of statistical models. They can be
described by two random processes. The first one is referred to as a Markov chain
that consists of a set of states. These are connected to each other according to a
specific topology and specific state transition probabilities. The states of an HMM
are hidden, i.e. they are not observable. Instead, a defined set of symbols can
be observed. This is governed by the second random process in which each of the
hidden states can emit a symbol out of the symbol set according to a state dependent
emission probability.

Formally an HMM is defined as a five-tuple λ = (S,A, V,B, π) consisting of:

• S = {s1, s2, . . . , sn} is the set of states, where n is the number of states.

• A = (aij) is the state transition probability matrix, where aij = P (qt+1 =
sj|qt = si) is the probability of transition from state si at time t to state sj at
time t+ 1 and 1 ≤ i, j ≤ n. qi denotes the system state at time i.

• V = {v1, v2, . . . , vn} is the set of observable symbols (feature vectors) of a
discrete HMM, where n is the number of distinct symbols, or V = Rd is the
observable symbol space (feature space) of a continuous HMM.

• B = {b1, b2, . . . , bn} is the set of the state dependent emission probability
distributions of a discrete HMM or the set of the state dependent emission
probability densities of a continuous HMM, where bi(v) = P (ot = v|qt = si)
is the probability of observing v ∈ V from state si. oi denotes the observation
at time i.

• π is the initial probability distribution, where π(si) = P (q1 = si) is the prob-
ability of state si being the first state q1 that emits the first symbol of an
observation sequence.

Given appropriate values of the above mentioned parameters an HMM can then be
applied to generate an observation sequence O = O1O2 . . . OT , where Ot ∈ V , T
is the number of observations in the sequence. O is generated by traversing the
sequence of states Q = q1q2 . . . qT where qi ∈ S.

For a given observation sequence O = O1O2 . . . OT , an HMM can be built by finding
appropriate parameters to model the observation O.

As mentioned above, the set of emission symbols V can be a finite set. In this
case the HMM is referred to as a discrete HMM, where bi are discrete probability
distributions. This is in contrast to a continuous HMM, where V is Rd and bi are
continuous probability densities. In many cases a weighted sum of Gaussian densities
is used as emission probability densities of a continuous HMM.

In order to apply HMMs, three fundamental problems have to be solved. These
problems and their solutions are introduced in the following as stated in [Rab89]:
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The Evaluation Problem

Given an observation sequence O = O1O2 . . . OT and an HMM λ - how to compute
P (O|λ) efficiently, namely the probability of the observation O given the HMM λ?
The evaluation problem can also be formulated as how likely a given HMM λ is able
to generate the given observation O. Solving the evaluation problem is important
for finding one of many HMMs which best matches the observation sequence.

A theoretical approach to solve the evaluation problem is given by summing the
probabilities of all possible state sequences which are able to generate the observation
sequence O. One possible state sequence to generate the observation O is given by

Q = q1q2 . . . qT (4.1)

The probability of the observation sequence O given the state sequence Q is

P (O,Q|λ) = P (O|Q, λ)P (Q|λ) (4.2)

Summing the probabilities of all possible state sequences which can generate the
observation O leads to the following:

P (O|λ) =
∑
all Q

P (O|Q, λ)P (Q|λ) (4.3a)

=
∑

q1,q2,...,qT

πq1bq1(O1) aq1q2bq2(O2) . . . aqT−1qT bqT (OT ) (4.3b)

For an HMM with N states and an observation sequence of length T the com-
putational complexity of (4.3b) is O(TNT ) which means that the computational
effort grows exponentially to the observation sequence length T . This makes the
computation of (4.3b) infeasible for large T . Thus, another procedure called the
Forward-Algorithm is applied to solve the evaluation problem.

The Forward-Algorithm is based on the forward variable which is defined as follows:

αt(i) = P (O1O2 . . . Ot, qt = si|λ). (4.4)

The forward variable αt(i) is the probability of the partial observation sequence
O1O2 . . . Ot and the state at time t being si. The forward variable is then used to
calculate P (O|λ) recursively as follows:

• Initialization:
α1(i) = πibi(O1), 1 ≤ i ≤ n. (4.5)

• Induction:

αt+1(j) =

[
n∑

i=1

αt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1

1 ≤ j ≤ n.

(4.6)
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• Termination:

P (O|λ) =
n∑

i=1

αT (i). (4.7)

The computational complexity of (4.7) isO(TN2). This allows the Forward-Algorithm
to become a practicable solution for the evaluation problem.

The Decoding Problem

Given an observation sequence O = O1O2 . . . OT and an HMM λ - how to compute
argmaxq1q2...qTP (q1q2 . . . qT |O, λ) efficiently, namely the most likely state sequence
Q = q1q2 . . . qT that is traversed for generating the observation O? By solving this
problem a certain insight into the hidden state structure of HMMs can be gained.
In this way, optimal state sequences for certain observations can be found.

To solve this problem the following probability has to be maximized:

P (Q|O, λ) (4.8)

which is the same as maximizing

P (Q,O|λ) (4.9)

An algorithm based on dynamic programming called Viterbi-Algorithm is used to
formally solve the decoding problem by finding the most likely single state sequence
Q = q1q2 . . . qT to match the observation O = O1O2 . . . OT . Therefore, the quantity

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt = si, O1, O2 . . . Ot|λ) (4.10)

has first to be defined which is the highest probability along a single path at time
t and being in state si. The quantity δt(i) can be used to formulate a recursive
procedure that is similar to the one used in the Forward-Algorithm. The procedure
is defined as follows:

• Initialization:
δ1(i) = πibi(O1), 1 ≤ i ≤ n. (4.11)

• Induction:

δt+1(j) =

[
max
1≤i≤n

δt(i)aij

]
bj(Ot+1), 1 ≤ t ≤ T − 1

1 ≤ j ≤ n.

(4.12)

• Termination:
P ∗ = max

1≤i≤n
(δT (i)), (4.13)

where P ∗ is the probability of the best single state sequence given by

q∗t = arg max
1≤i≤n

(δT (i)), (4.14)

which is determined by keeping track of the best state sequence produced by the
above recursive procedure.
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The Training Problem

Given an observation sequence O = O1O2 . . . OT and an HMM λ - how to adjust the
model parameters of λ to maximize P (O|λ), i.e. how to modify a given HMM λ to be
able to generate a given observation sequence O, also called training sequence, more
likely? By solving this problem the HMM λ is optimized to match the observation
O more likely.

A well known solution for the training problem is mentioned in [Rab89] which is the
Baum-Welch-Algorithm. This algorithm is based on the Forward-Backward algo-
rithm [Rab89]. Here, the transition probabilities and the emission probabilities are
optimized. However, in ASR it is common to discard the optimization of the state
transition probabilities because it does not have a great impact on the performance
of the recognition system. Thus, the training problem can be reduced to only op-
timize the parameters of the state dependent emission probabilities. This can be
achieved by applying a Viterbi-based EM training algorithm that can be carried out
in two steps. In the first step the Viterbi-Algorithm mentioned above is applied to
determine the most likely state sequence. Then, in the second step the parameters
of the model are re-estimated according to the state sequence found in step one.
This training algorithm is explained in more detail in section 4.2.2

4.2 HMM-based Motion Recognition System

In section 4.1 a brief introduction to the theory of HMMs was given. In this section
more information is given about how an HMM-based recognition system is built and
how such a system is applied for HMR.

4.2.1 Modeling of Motion Units

In order to apply HMR several issues have to be considered. One of these issues
is the abstraction level at which the motion data is modeled. There are different
levels of abstraction that can be applied for modeling human motion data. Motion
models at a high level of abstraction are more complex than motion models at a
lower abstraction level and they also have a higher information content. Models at a
high abstraction level might represent complex motions like ”pouring water”whereas
models at a low abstraction level might represent primitive motions like ”take glass”
or ”take bottle”. In order to model complex motions at a higher abstraction level
a huge amount of training data is needed. This is because models of each complex
motion type require a sufficient number of training data that contains different
motion variations in order to achieve a robust estimation of the motion. Another
disadvantage of modeling complex motions is that new un-modeled complex motions
cannot be recognized. Hence, for each new complex motion a new HMM has to be
built.

In ASR different levels of abstraction are applied depending on the target applica-
tion. In a system with limited vocabulary a word abstraction level can be applied.
Each single word in the vocabulary is modeled with a single HMM. Sentences which
are at a higher level of abstraction can be modeled by concatenating different word
models. This approach is adopted by many works concerned with HMR in order to
model human motion data. Like a sentence in speech that can be split into several
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words a complex motion like ”pouring water”can be split into primitive motion units
like ”take glass”, ”take bottle”, ”pour water”, ”put bottle back” and ”put bowl back”.
This way each motion unit can be modeled by using a single HMM. A complex mo-
tion can be modeled by concatenating a certain number of motion unit models. This
kind of modeling decreases the amount of training data required by the recognition
system. Additionally, the flexibility in composing complex motions using motion
unit models increases. New complex motions can be modeled or recognized by con-
catenating existing motion unit models. Gehrig et al. [GKWS09] investigate such
an approach by modeling a set of primitive motion units extracted from complex
motion sequences. The motion units are considered as a limited low-level motion
vocabulary. This approach as well as the optimized configuration of the HMM-based
recognition system presented in [GKWS09] are adopted in this work.

A motion unit model represented by an HMM consists of a certain number of states.
Each state represents a part of the motion unit. In this work every motion unit is
modeled with an HMM consisting of 4 states: 1) the beginning of the motion unit,
2) middle part I, 3) middle part II, and 4) the end of the motion unit.

The states in an HMM are connected to each other by a certain kind of topology.
In this work a linear left-to-right topology is applied. This topology is often used
in ASR and is successfully applied for HMR, e.g. in [GKWS09]. As shown in
figure 4.1, the topology only allows state transitions to the current state or to the
right neighboring state. As mentioned in section 4.1 the transition probabilities
have no impact on the performance of the recognition system. Hence, all transition
probabilities are set to be equal.

Figure 4.1: An HMM with linear left-to-right topology.

As mentioned in chapter 3 the information comprised in the human motion data
used in this work are angle values of 24 DOF of different joints. The angle values
of one DOF lie in the interval I = [−π, π]. The angle values of all DOF are then
elements of the space V = I24. Consequently, V builds the continuous feature space
or rather the continuous symbol space of HMMs used to model the motion units.
As mentioned in section 4.1 this kind of HMMs is called continuous HMMs.

The HMM states emit feature vectors v ∈ V according to the state dependent
emission probability densities bi, where i refers to state i. The emission probability
densities used in this work are Gaussian mixtures. The emission probability density
bi of state i is then defined as follows:

bi(x) =
m∑
j=1

cijN(x|µij,Σij), (4.15)

where the parameters cij, µij and Σij have to be estimated in the training phase.
In this work, a Gaussian mixture of 16 Gaussians with diagonal covariance matrices
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Figure 4.2: The forced alignment of a complex motion sequence. According to a
motion transcription, the motion unit models (HMMs) are concatenated or aligned
in order to build a model for the entire complex motion. The arrows illustrate the
transition from the end state of the predecessor HMM to the begin state of the
successor HMM.

is used as an emission probability density function. The number of Gaussians was
optimized in experiments conducted in [GKWS09].

4.2.2 Initialization and Training of Motion Unit Models

The training process is essential when HMM-based modeling is applied. In the
training process the parameters of the models, especially the parameters of the
emission probability densities, are estimated to fit the underlying training data.

As mentioned above the algorithm applied for training in this work is a Viterbi-based
EM-algorithm. In order to apply the Viterbi-based EM-algorithm initial motion unit
models are required. A good initialization of motion unit models can be achieved by
applying pre-segmented motion data. According to the segmentation different data
segments in motion data sequences can be assigned to specific motion units.

The initialization task is carried out in three steps. The first step is to divide each
data segment associated with a certain motion unit by the number of HMM states.
This way a set of feature vectors is assigned for each state to be used for initializing
the parameters of the Gaussian mixtures. The second step is to cluster the feature
vectors associated with an HMM state among a number of clusters equal to the
number of Gaussians in the Gaussian mixture. In the third step of initialization the
mean and the covariance matrix of each Gaussian are calculated out of the feature
vectors located in the corresponding cluster. In this work the neural gas algorithm
[MBS93] is applied as clustering method in the initialization task of HMMs.

After initialization of the motion unit models the actual training procedure can be
started. In this work a Viterbi-based EM-algorithm is applied. The algorithm is
based on two main steps. The first one can be referred to as the expectation step of
the EM-algorithm and the second one as the maximization step.

The expectation step itself consists of several steps. Firstly, a forced alignment of
motion units is applied. In this step the motion unit models which appear in a
certain complex motion training sequence are concatenated according to the tran-
scription of the complex motion. A transcription in this context means the ordered
sequence of motion unit labels applied to compose the complex motion. In figure 4.2
the forced alignment of the complex motion ”pouring water” is illustrated. In a sub-
sequent step the Viterbi-Algorithm is applied to find the best state sequence within
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the concatenated HMM sequence given the training data sequence. This way each
feature vector in the training sequence is assigned to one of the states of the con-
catenated HMMs. In the maximization step the assigned feature vectors are used to
re-estimate the Gaussians of the associated HMM state by using an EM-algorithm.

The expectation and maximization steps of the Viterbi-based EM-algorithm are
iteratively repeated for a defined iteration number in order to find a good estimation
of the Gaussian Mixtures. In this work five iterations were applied.

4.2.3 Decoding using IBIS

The decoding is the process of finding the most likely hypothesis for a given observa-
tion. In this work the observation is a complex motion sequence X which consists of
a certain amount of frames (feature vectors). The sequence can be subdivided into
several primitive motion units. Thus, an optimal hypothesis provided by the decod-
ing process has to be a sequence of motion unit labels Û (transcription) which match
the motion units in the observation most likely. This can be defined as follows:

Û = arg max
U

P (U |X). (4.16)

By applying the Bayes’ theorem for conditional probabilities the following is ob-
tained:

P (U |X) =
P (X|U)P (U)

P (X)
, (4.17)

where P (X|U) is the probability of observing feature vector sequence X given the
sequence of motion units U , P (U) is the prior probability of motion unit sequence
U and P (X) is the prior probability of observing the feature vector sequence X.
Since P (X) is a denominator which has no impact on maximizing P (U |X) (4.16)
can then be written as follows:

Û = arg max
U

P (X|U)P (U). (4.18)

Since X is a sequence of feature vectors and U a sequence of motion unit labels
(4.18) can be written as follows:

Û = arg max
U1,U2,...

∏
i

P (Xi|Ui)P (Ui), (4.19)

where P (Xi|Ui) is the probability of observing the partial observation Xi given the
HMM with the label Ui and P (Ui) is the prior probability of motion unit Ui which
is determined by using a statistical motion unit model. An example of a statistical
motion unit model is the bi-gram model in which the occurrence probability of a
certain motion unit given a certain motion unit as its predecessor is comprised. In
this work the bi-gram statistical model is applied.

The IBIS decoder used in this work is based on the Viterbi-Algorithm. It integrates
the decoding of the optimal state sequence within an HMM for a single motion
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unit and the transition between distinct motion units in one process. The prior
probabilities of motion units in the statistical bi-gram model are considered when
a transition between two motion units is possible. The transition is possible only if
the current state of the HMM is the end state.

The IBIS decoder carries out the decoding as a time-synchronous beam search in
which only the state paths with the highest probabilities within the beam are con-
sidered. During time-synchronous search the considered hypotheses are expanded
simultaneously frame by frame.

The output of the IBIS decoder is a hypothesis consisting of a sequence of motion
unit labels and their boundaries in the observation sequence.

4.2.4 Performance Measures

4.2.4.1 Motion Unit Error Rate

In order to measure the performance of the recognition system the hypothesis pro-
vided by the decoder is compared to a reference motion unit sequence (manual
transcription). The more a hypothesis matches the corresponding reference the
lower is the recognition error. The comparison is achieved by using dynamic pro-
gramming in which the motion units of the hypothesis and the reference are aligned.
The alignment outputs the number of insertions (I), deletions (D), and substitutions
(S) of motion units needed to align the hypothesis and reference sequences. These
quantities can be used to define a performance measure.

Similar to the word error rate (WER) measure which is a common measure in ASR,
a measure for motion unit recognition can be defined in terms of motion unit error
rate (MUER) which can be calculated as follows:

MUER =
I +D + S

N
· 100%, (4.20)

where N is the number of motion units in the reference sequence.

The MUER can be greater than 100% since the number of motion units N in the
reference can be smaller than the sum of I, D, and S.

4.2.4.2 Precision, Recall, and F-score

A performance measure for a recognition system with respect to individual motion
units can be helpful in many situations. This, however, cannot be achieved by using
the MUER introduced in the last section. This is because the MUER can only be
applied to measure the error rate with respect to complete sequences of concatenated
motion units.

In order to measure the performance with respect to individual motion units the
precision, recall, and F-score measures are applied. The precision measure with
respect to a certain motion unit type u is defined as follows:

precisionu =
Nu,c

Nu,h

, (4.21)



28 4. HMM-based Human Motion Recognition

where Nu,c indicates how many times motion unit u is recognized correctly and
Nu,h is the occurrence frequency of motion unit u in the hypothesis. A motion
unit is considered to be recognized correctly if it occurs in the hypothesis in the
same position as in the reference sequence after aligning the two sequences by using
dynamic programming.

The precision measure, however, is not sufficient for measuring the performance
because it does not consider the deletions that occur when the alignment of the
hypothesis and reference sequences is applied. This can be balanced by using the
recall measure which is defined as follows:

recallu =
Nu,c

Nu,r

, (4.22)

where Nu,c indicates how many times motion unit u is recognized correctly and Nu,r

is the occurrence frequency of motion unit u in the reference sequence.

In order to enable the comparability of performance of different motion unit types
the precision and recall measures are combined to define the F-score measure. The
F-score measure is the harmonic mean of the precision and recall measures and it is
defined as follows:

F -scoreu =
2 · precisionu · recallu
precisionu + recallu

. (4.23)

Unlike the MUER, the higher the F-score value the higher is the performance of the
recognition system.

4.2.5 Confidence Measures

In the last section a performance measure for the recognition system is given in terms
of the MUER. This can be achieved by comparing the hypothesis with a reference
motion sequence, but in real-world applications there are no reference data which
can be used in order to assess the correctness or rather the confidence of a hypothesis.
This kind of measure, however, can be very useful for many applications. Actually,
this kind of measure has been investigated by many scientists in many fields of
artificial intelligence. The most common term for such a measure is the confidence
measure.

The definition of a confidence measure depends on the type of the underlying decod-
ing process. In this work the applied decoding process is a time-synchronous beam
search that allows the generation of a so-called lattice. A lattice is graph with all
retrieved recognition results. It contains the best hypotheses provided by the de-
coding process. The hypothesis with the highest a posteriori probability in a lattice
is chosen as the recognition result. The a posteriori probability is a first indication
about the confidence of the provided hypothesis, but in this case the a posteriori
probability corresponds to the above mentioned complete sequence Û of motion unit
labels. Yet, a confidence measure for each motion unit within the sequence is more
beneficial for many applications.

In their work [KS97], Kemp and Schaaf introduce different confidence measures
based on a lattice as an information source. In the following sections two different
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confidence measures investigated in [KS97] are introduced. After the introduction
of the confidence measures, a method for the confidence measure evaluation is in-
troduces.

4.2.5.1 Gamma-Probability

A lattice provided by the above mentioned IBIS decoder consists of nodes that
represent the motion units at different time instances in different hypotheses and
links that represent the transition among different motion units. The topology of a
lattice can be compared to that of an HMM; the nodes of the lattice can be seen
as states of an HMM, the probability P (Xi|Ui) provided by a motion unit model
in a certain node in the lattice can be seen as the emission probability of an HMM
state, and the prior probabilities provided by the statistical motion unit model can
be seen as the transition probabilities among HMM states. This analogy leads to
the possibility of applying the Forward-Backward-Algorithm in order to enable the
calculation of a probability for each link in a lattice. The link probabilities can then
be interpreted as a posteriori probabilities of motion units. This probability measure
is called the gamma probability and it can be applied as a confidence measure for
hypotheses in the motion unit abstraction level.

4.2.5.2 A-Stabil

Another confidence measure which is based on a lattice of hypothesis is the acoustic
stability. As the name suggests, this confidence measure is based on the stability
of the acoustic score. The acoustic score in ASR is analogous to the probability
P (Xi|Ui) provided by a motion unit model given an observation. The term acoustic
stability is retained in this work.

Consider an extension of (4.18) with a weighting factor lz and a motion unit insertion
penalty lp as follows:

Û = arg max
U

[
lp|U | · P (X|U) · P (U)lz

]
, (4.24)

where |U | is the count of motion units in U .

In order to determine the acoustic stability a set H of alternative hypothesis is
computed by setting different values for lz and lp. In a subsequent step the best
hypothesis provided by the recognition system is used as a reference hypothesis to
be aligned with each of the remaining hypotheses in H. Finally, for each motion
unit in the reference hypothesis the occurrence frequency in the hypotheses of H is
calculated and normalized by the size of H to indicate the acoustic stability of the
given motion unit. This can be considered as a confidence measure in the motion
unit abstraction level.

4.2.5.3 Evaluation of the Confidence Measures

In order to make meaningful use of a confidence measure it has to be evaluated
first. The evaluation shows whether recognized motion units with a high confidence
value are actually recognized correctly and whether recognized motion units with a
low confidence value are recognized wrong. This can be achieved by comparing the
confidence value of a recognized motion unit with its precision value.
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The precision measure mentioned in section 4.2.4.2 is calculated with respect to
a certain motion unit type u. In order to make use of the precision measure in
conjunction with the confidence measure the precision measure is calculated with
respect to confidence values within a specific confidence value range.

precisionx =
Nx,c

Nx

, (4.25)

where Nx,c is the number of correctly recognized motion units with confidence values
within the range x and Nx is the number of all motion units with confidence values
within the range x.

Equation 4.25 gives the rate of correctly recognized motion units with respect to
confidence values within a specific confidence value range. A meaningful confidence
measure is found when precisionx increases and decreases proportionally to the
confidence values within the range x.

4.2.6 Cross-Validation

In order to avoid noisy recognition results because of the relatively small size of the
data sets the cross-validation technique is utilized. In this work the k-fold cross-
validation technique is used in which k different partitions of a data set are applied,
each containing a different subset of training and test data. Each different partition
is called fold. The test data set in each fold is complementary to the test data set
in other folds. The test data set of each fold consists of Ntest motion sequences:

Ntest =
1

k
Nall, (4.26)

where Nall is the amount of motion sequences in the complete data set. The training
data set is given by the remaining Ntraining motion sequences:

Ntraining =
k − 1

k
Nall. (4.27)

Consequently, the complete data set is a conjunction of the test and the training
subsets in a specific fold.

In order to determine the overall recognition performance the recognition perfor-
mance of each fold is measured separately. Then the average of the performance
of all folds is considered as the overall performance. An example of a 5-fold cross-
validation is illustrated in figure 4.3.

The evaluation of the recognition system is carried out by using the data sets pre-
sented in section 3.2. The evaluation using data set A and B is carried out by
using a 10-fold cross-validation. With regard to data set A, in each fold 45 motion
sequences of each motion type can be used to initialize and train the system. The
resulting 5 motion sequences of each motion type can be used to test the system.
The total number of motion sequences in the training set in each fold is 450. The
total number of motion sequences in the test set in each fold is 50.
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Figure 4.3: A 5-fold cross-validation. The black area represents the motion sequences
used for testing. The motion sequences in the remaining white area are used for
initialization and training.

With regard to data set B, in each fold 18 motion sequences of each motion type
can be applied to initialize and train the system. The remaining 2 motion sequences
of each motion type can be applied to test the system. The total number of motion
sequences in the training set in each fold is 90. The total number of motion sequences
in the test set in each fold is 10.

The evaluation using data set C is carried out by using a 5-fold cross-validation. In
each fold 20 motion sequences of each complex motion type (4 for each positioning
configuration) are used to initialize and train the system. The remaining 5 motion
sequence of each motion type (one for each positioning configuration) are used to
test the system. The total number of motion sequences in the training set in each
fold is 80. The total number of motion sequences in the test set in each fold is 20.

4.2.7 Experiments

In the previous section an HMM-based human motion recognition system was intro-
duced. In this section several recognition systems of two different types are devel-
oped. The first system type is referred to as the baseline system. A baseline system
is developed by using the same amount of manually segmented data for initialization
and training. The amount of manually segmented data is varied between different
experimental sessions. The second system type is a recognition system that can be
developed by using different amounts of manually segmented data for initialization
and manually transcribed data for training. The performance of both system types
is measured in terms of MUER introduced in section 4.2.4.1.

A baseline system is defined as follows:

BS(data, ci,t), (4.28)

where data is the applied data set and ci,t is the number of motion sequences of
each complex motion type used for initialization and training. In this work the
development of baseline systems serves two purposes; firstly, the performance of a
baseline system is considered as a baseline for the performance of other recognition
systems developed by applying the approaches investigated in this work; secondly,
the developed baseline systems are utilized for segmentation in the supervised HMM-
based segmentation method.
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Figure 4.4: The performance of the baseline systems using different amounts of
initialization and training data from data set A. ci,t is the number of manually
segmented motion sequences of each complex motion type used for initialization
and training.

The first experiment conducted in this section deals with the evaluation of different
baseline systems on different data sets. The evaluation is carried out by using
different data amounts for the initialization and training tasks.

The evaluation of baseline systems using data set A is conducted by applying a
10-fold cross-validation as described in section 4.2.6. For each fold 9 experimental
sessions are carried out. In each session a new baseline system is developed by using
a different amount of initialization and training data. In the first session the baseline
system is developed by using 5 motion sequences of each complex motion type. In
each following session the sequence number of each complex motion type is increased
by 5.

The results of the evaluation are shown in figure 4.4. As expected the performance
increases by increasing the number of motion sequences used for initialization and
training. A performance difference of 7% can be noticed between BS(A, 5) and
BS(A, 10). This difference decreases between BS(A, 10) and BS(A, 15) to become
about 2%. In the following sessions the performance difference between almost all
two consecutive baseline systems decreases to a value smaller than 1% MUER. The
best recognition result which is a MUER of 16.13% is achieved by using all 45 motion
sequences of each complex motion type for initialization and training (BS(A, 45)).
This result is accompanied by a standard deviation of 5.73%.

With regard to the evaluation using data set B, the experiment is also carried out by
using a 10-fold cross-validation. For each fold, 9 experimental sessions are carried
out. The first session is carried out by using 2 motion sequences of each complex
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Figure 4.5: The performance of the baseline systems using different amounts of
initialization and training data from data set B. ci,t is the number of manually
segmented motion sequences of each complex motion type used for initialization
and training.

motion type for initialization and training. In the following sessions the number of
sequences is increased by 2.

The results of the evaluation are shown in figure 4.5. The same trend as in the
evaluation using data set A can be noticed. The performance increases by increasing
the number of motion sequences used for initialization and training, although the
results in session 4 and 9 do not quite follow the trend. The standard deviation
increases firstly then decreases with increasing the training sequence count. The
best recognition result is a MUER of 19% which is achieved by using 16 motion
sequences for training (BS(B, 16)). The standard deviation amounts to 3.69%.

The evaluation using data set C is carried out by using a 5-fold cross-validation. For
each fold the performance is measured in 4 different sessions. The first session is
carried out by using 5 motion sequences of each complex motion type (one sequence
of each positioning configuration). In each following session the number of motion
sequences is increased by 5. The last session is carried out by using 20 motion
sequences.

The results of the evaluation are shown in figure 4.6. The performance difference in
the first three sessions is minimal, but a high performance difference of 5.5% between
the last two sessions can be noticed. The best performance of 32.51% MUER is
achieved in session 4 (BS(C, 20)) in which the entire training set is applied. This is
accompanied by a standard deviation of 3.65%.

The evaluation of the baseline systems using different amounts of training data shows
that the higher is the amounts of initialization and training data the better is the
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Figure 4.6: The performance of the baseline systems using different amounts of
initialization and training data from data set C. ci,t is the number of manually
segmented motion sequences of each complex motion type used for initialization
and training.

performance of the baseline system. This is due to the fact that the Gaussians of
the emission probability density functions of the HMM states can be estimated more
robustly when more data is provided.

The effort spent for the preparation of manual transcriptions is much lower than that
of manual segmentations. The segmentation data is only applied in the initialization
task. In the training task only the transcriptions of data sequences is required.
Therefore, using a little amount of manually segmented data for the initialization
and more transcription data for the training might lead to a reliable performance of
the recognition system and at the same time the effort spent for preparing manual
segmentations can be reduced.

In the following experiment several recognition systems are developed which are
initialized and trained by using different amounts of manually segmented data for
initialization and different amounts of manually transcribed data for training. The
developed recognition systems are defined as follows:

RSm(data, ci, ct), (4.29)

where data is the applied data set, ci is the number of motion sequences of each
complex motion type used for initialization, and ct is the number of motion sequences
of each complex motion type used for training.

The evaluation using data set A is carried out in 5 sessions. In each session a 10-
fold cross-validation is applied. In the first session 5 sequences of each complex
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Figure 4.7: The performance of the recognition systems using different amounts
of training data from data set A. ci is the number of manually segmented motion
sequences of each complex motion type used for the initialization. ct is the number
of manually transcribed motion sequences used for training.

motion type are used for the initialization task. This number is increased by 5 in
each following session. In each session several recognition systems are developed and
evaluated. The first recognition system in each session is trained by using 5 more
motion sequences of each complex motion type than used in the initialization task.
This number is increased by 5 for every following recognition system in the session.
The maximum number of training sequences of each complex motion type is 45.

In figure 4.7 the results of the evaluation of the developed recognition systems and
the results of the evaluation of the baseline systems using data set A are shown.
The gray bars represent the performance of the baseline systems developed in the
last experiment. The white bars represent the performance of the recognition sys-
tems trained with different amounts of data sequences in conjunction with their
transcriptions. The lines on the bars represent the standard deviation of MUERs
between different cross-validation folds. It can be seen that in all sessions the per-
formance of the recognition systems increases by increasing the number of manually
transcribed motion sequences used for training. The performance is almost as good
as the performance of the baseline systems initialized and trained with the same
number of motion sequences. Using many manually transcribed motion sequences
reduces the MUER even if the number of motion sequences used for initialization
is low. A good example for this behavior is the recognition system RS(A, 10, 45)
which has a performance of 16.57% MUER. This is very close to the performance
of the baseline system BS(A, 45) (16.13% MUER) which is initialized by using 35
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Figure 4.8: The performance of the recognition systems using different amounts
of training data from data set B. ci is the number of manually segmented motion
sequences of each complex motion type used for the initialization. ct is the number
of manually transcribed motion sequences used for training.

additional motion sequences of each complex motion type. In almost all cases the
standard deviation decreases by increasing the training data.

The evaluation using data set B is also carried out in 5 different sessions. For this,
a 10-fold cross-validation is applied. In the first session 2 sequences of each complex
motion type are used for the initialization task. This number is increased by 2 in
each following session. In each session several recognition systems are developed and
evaluated. The first recognition system in each session is trained by using 2 more
motion sequences of each complex motion type than used in the initialization task.
This number is increased by 2 for every following recognition system. The maximum
number of training sequences of each complex motion type is 18.

In figure 4.8 the results of the evaluation of the developed recognition systems and
the evaluation of the baseline systems using data set B are shown. The same trend
as in the evaluation using data set A can be noticed. In all sessions the perfor-
mance of the recognition systems increases by increasing the number of transcribed
motion sequences used for training. The performance is almost as good as the per-
formance of the baseline systems initialized and trained with the same number of
segmented motion sequences. In some cases the recognition systems outperform the
baseline systems initialized by using a higher number of manually segmented mo-
tion sequences, but trained using the same number of transcribed motion sequences.
Recognition system RSm(B, 2, 18) which has a performance of 17.37% MUER out-
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Figure 4.9: The performance of the recognition systems using different amounts
of training data from data set C. ci is the number of manually segmented motion
sequences of each complex motion type used for the initialization. ct is the number
of manually transcribed motion sequences used for training.

performs the baseline system BS(B, 18) (19.7% MUER) even though it is initialized
by using 10 more segmented motion sequences of each complex motion type. In
almost all cases the standard deviation decreases by increasing the training data.

The evaluation using data set C is carried out in 3 sessions. In each session a 5-fold
cross-validation is applied. In the first session 5 sequences of each complex motion
type (one of each positioning configuration) are used for the initialization task. This
number is increased by 5 in each following session. In each session several recognition
systems are developed and evaluated. The first recognition system in each session is
trained by using 5 more motion sequences of each complex motion type than used in
the initialization task. This number is increased by 5 for every following recognition
system. The maximum number of training sequences of each complex motion type
is 20.

The results of the evaluation using data set C are illustrated in figure 4.9. The
gray bars represent the performance of the baseline systems developed. The same
trend as in the last two evaluations can be noticed. Except for recognition system
RSm(C, 5, 10) all other recognition systems perform better than the baseline systems
initialized with the same amount of data. RSm(C, 10, 20) with a performance of
31.33% MUER performs slightly better than the baseline system BS(C, 20) (32.03%
MUER). The standard deviation increases only in the first session. In the remaining
sessions the standard deviation always decreases.
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The results of the last experiment leads to the conclusion that the amount of train-
ing data is more significant for the performance of the recognition system than the
amount of initialization data. Even if a little amount of data is applied for initial-
ization the performance of the recognition system can be significantly increased by
applying more data in the training task. This is a great advantage since for the
training task only the data sequences and their transcriptions is required. The effort
spent for the preparation of manual transcriptions is much lower than the effort
spent for preparation of manual segmentations. Thus, the first possible approach
for reducing the development effort for a motion recognition system is to reduce the
number of manual segmentations used for initialization and increase the number of
manual transcriptions used for training.



5. Automatic Segmentation

Segmentation is an important task applied for the initialization and for the training
of many recognition systems. It becomes essential when signals are modeled at an
abstraction level of representation lower than that of the provided signal data used
for training. With regard to HMR, complex motions at a higher level of abstraction,
e.g. ”pouring water”, have first to be segmented into primitive motion units at a
lower abstraction level, e.g. ”take bowl”, ”take bottle”, ”pour”, ”put bottle back”, and
”put bowl back”, in order to enable motion modeling at a lower abstraction level;
namely at the primitive motion unit abstraction level.

Segmentation is mostly done manually which is very time-consuming, and therefore,
costly. Moreover, manual segmentation is not applicable for real-time applications
and there have to be strict rules for operators to avoid inconsistency. These rea-
sons make the application of automatic segmentation methods desirable. However,
developing automatic segmentation methods is very challenging. In particular, un-
supervised automatic segmentation algorithms which provide a similar segmentation
into meaningful motion units as provided by the manual segmentation are hard to
design. They are, however, still desirable because they do not require any manually
segmented training data, i.e. there is no need for human intervention. On the con-
trary supervised model-based automatic segmentation approaches require a certain
amount of manually segmented training data, but they are able to provide a similar
segmentation as provided by the manual segmentation.

In this chapter two automatic segmentation approaches are introduced. The first
one is supervised and HMM-based. For this approach a little amount of manually
segmented training data is required to initialize and train HMMs that are applied
for automatic segmentation. The second approach is unsupervised and PCA-based.
In this approach the first principal component provided by the PCA is used to derive
a segmentation feature.

5.1 Supervised Automatic Segmentation

Generally, supervised model-based automatic segmentation is based on the idea of
using a set of previously trained models for different motion units to find similar



40 5. Automatic Segmentation

motion units in un-segmented motion data. The models are usually trained by
using manually segmented data. In this section a supervised automatic segmentation
approach based on HMMs is introduced.

5.1.1 HMM-based Automatic Segmentation

An advantage of signal modeling using HMMs is the comprised segmentation task
within the decoding process. A decoding algorithm, e.g. the Viterbi-Algorithm,
provides the best state sequence given an observation. This means that sequences
of feature vectors in an observation are assigned to specific HMM states. Using the
IBIS decoder mentioned in section 4.2.3, it is possible to decode an observation that
represents a complex motion built by concatenating several motion units. Given
such an observation the IBIS decoder is able to provide the best HMM sequence
that can be concatenated in order to built the observation. This way sequences of
feature vectors in the observation are assigned to complete HMMs. Hence, the hy-
pothesis Û provided by the IBIS decoder consists of a sequence of motion unit labels
representing the respective HMMs. The hypothesis Û also comprises the boundaries
between motion units in the observation (transitions between concatenated HMMs).
Consequently, the hypothesis Û can be considered as segmentation or transcription
(without boundaries) of an observation that represents a complex motion sequence.
This fact can be exploited to apply automatic motion segmentation by using a pre-
viously trained HMM-based recognition system.

As mentioned in section 4.2.7 the applied recognition system for segmentation is
referred to as the baseline system. The baseline system is initialized and trained
by using a certain amount of manually segmented data. The system is utilized to
decode/segment un-segmented motion data.

The hypothesis provided by the baseline system can be erroneous, especially when a
little amount of data is used for training. Thus, quality information about the pro-
vided hypothesis can be very useful in order to avoid a false training of a recognition
system caused by using erroneous segmentation data. Therefore, a confidence mea-
sure such as mentioned in section 4.2.5 can be applied to identify and filter correctly
recognized data segments in order to allow collecting clean segmentation data.

The HMM segmentation task can be applied in different configurations. A possible
configuration is to apply the baseline system to segment a complete data set and then
use only filtered transcriptions in conjunction with the old training data to re-train
the baseline system. This can be repeated for several iterations in order to improve
the quality of the transcriptions. In this work this segmentation configuration is
referred to as configuration I and is formally defined as follows:

1. Define initial train set Tini

2. Define test set Ttest

3. Define segmentation set S

4. Define threshold θC for confidence values

5. Define structure for recognition system Θ
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6. Initialize and train Θ using Tini

7. Repeat the following steps for n iterations

(a) Decode/Segment S using Θ

(b) Write segmentation results with confidence value ≥ θC into set TS

(c) Re-train Θ using Tini ∪ TS
(d) Test Θ using Ttest

Another segmentation configuration is similar to configuration I. The only modifica-
tion is to apply the automatic segmentation for both re-initialization and re-training
instead of only re-training using transcriptions. This configuration is referred to as
configuration II and it is formally defined as follows:

1. Define initial train set Tini

2. Define test set Ttest

3. Define segmentation set S

4. Define threshold θC for confidence values

5. Define structure for recognition system Θ

6. Initialize and train Θ using Tini

7. Repeat the following steps for n iterations

(a) Decode/Segment S using Θ

(b) Write segmentation results with confidence value ≥ θC into set TS

(c) Re-initialize and re-train Θ using Tini ∪ TS
(d) Test Θ using Ttest

The modification can be found in step 7c of configuration II.

The third configuration of the HMM-based segmentation algorithm used in this
work is based on the idea of using the baseline system to segment the data in several
consecutive sessions. In each session only a subset of the data is segmented. The
gained filtered segmentation is used in conjunction with the old training data to re-
train the baseline system. The segmentation and re-training steps can be repeated
for several iterations in each session. In the following sessions the re-trained baseline
system is used to segment another subset of the remaining data. The new segmented
data is used to re-train the baseline system in conjunction with the training data
of the previous sessions. This is repeated until all available data is segmented and
used to improve the baseline system. As in configuration I, only the transcriptions
are used for the re-training task. Configuration III of the HMM-based segmentation
algorithm is formally defined as follows:

1. Define initial train set Tini
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2. Define test set Ttest

3. Define segmentation set S

4. Define threshold θC for confidence values

5. Define structure for recognition system Θ

6. Initialize and train Θ using Tini

7. Repeat the following steps until S is empty

(a) Select m motion sequences from S and insert them into set Sm

(b) Repeat following steps for n iterations

i. Decode/Segment Sm using Θ

ii. Insert segmentation results with confidence value ≥ θC into set Ti of
iteration i

iii. Re-train Θ using Tini ∪ Ti
iv. Test Θ using Ttest

(c) Remove Sm from S

In the next section experiments are carried out in order to examine the efficiency of
each segmentation configuration mentioned above.

5.1.2 Experiments

5.1.2.1 Evaluation of Confidence Measures

In section 4.2.5 two confidence measures were introduced which can be applied to
estimate the confidence of recognized motion units. This kind of measure is very
useful for the HMM-based segmentation process. A recognized motion unit with
a high confidence value can be considered as a correct segmentation that can be
applied for training a recognition system or improving an existing one.

The experiments introduced in section 4.2.7 are carried out in order to examine the
performance of the baseline systems using different data sets and different amounts of
initialization and training data. In addition, the a-stabil and the gamma probability
confidence measures were calculated in order to enable their evaluation. This is
carried out in order to examine the validity of the confidence measures. In this
section the results of this evaluation are presented. The evaluation is conducted by
using the confidence specific precision measure introduced in section 4.2.5.3.

In figures 5.1 A - C the precision values with respect to confidence values in differ-
ent ranges provided by the baseline systems BS(A, 5), BS(A, 25), and BS(A, 45)
are plotted. The black dots represent the precision values with respect to gamma
probability confidence values within different ranges. The precision values with re-
spect to the a-stabil confidence values are represented by squares. For the a-stabil
confidence measure it can be noticed that when the baseline system is trained by
using 5 motion sequences, the a-stabil values are spread within the range (0.25,1]
and the respective precision values are spread between 0 and 0.9. Actually, the
expected positive correlation between confidence values and precision values exists.
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Figure 5.1: The precision values with respect to confidence values provided by the
baseline systems trained using data set A. The values are provided by the baseline
systems A) BS(A, 5), B) BS(A, 25), and C) BS(A, 45).
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Figure 5.2: The precision values with respect to confidence values provided by the
baseline systems trained using data set B. The values are provided by the baseline
systems A) BS(B, 2), B) BS(B, 10), and C) BS(B, 18).
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Besides the outlier within the range (0.4,0.45] the positive correlation can also be
noticed when 25 motion sequences are used for training, but in this case the a-stabil
values are spread within the range (0.4,1.0]; almost all respective precision values
are spread between 0.6 and 1. This indicates that the baseline system becomes more
confident when more training data is used. This can also be seen in figure 5.1 C in
which the precision and confidence values provided by the baseline system BS(A, 45)
are plotted. The a-stabil values are spread within the range (0.45,1] and almost all
respective precision values are spread between 0.8 and 1. However, in this case an
explicit correlation cannot be noticed.

The evaluation of the gamma probability confidence measure turns out to be quite
different. No matter how much data from data set A is used for training the baseline
system, the values of the gamma probability are spread within the range [0,1], but
there are different gaps in which no gamma probability values exist. Almost all
respective precision values are spread between 0.1 and 0.5. A correlation between
precision and confidence values cannot be noticed no matter how many motion
sequences are used for training the baseline system.

The precision values with respect to confidence values provided by baseline systems
trained by using data set B are illustrated in figures 5.2 A - C. The precision values
are calculated with respect to the confidence values provided by the baseline systems
BS(B, 2), BS(B, 10), and BS(B, 18). The values of the a-stabil measure using 2
motion sequences for training are spread within the range (0.25,1]. The precision
values are spread between 0.1 and 0.85. Increasing the number of training data leads
to results similar to those of the evaluation with data set A. The a-stabil values when
using 10 motion sequences for training are found within the range (0.4,1] and when
using 18 training sequences the values are spread within the range (0.45,1]. In all
mentioned cases no explicit correlation between precision and confidence values is
noticed.

The values of the gamma probability provided by the baseline systems BS(B, 2),
BS(B, 10), and BS(B, 18) are spread within the range [0,1], but different gaps in
different ranges within the range [0,1] are noticed. The baseline system trained
with 18 motion sequences provides gamma probability values only within the ranges
[0,0.05], (0.5,0.55], and (0.85,1]. The respective precision values are low except for
the precision value of 0.64 for the confidence range [0,0.05]. In all mentioned cases
no explicit correlation between the precision values and the confidence values can
be noticed.

The results of the evaluation of both confidence measures mentioned above do not
turn out to be as expected. A clear correlation between the confidence values and the
precision values does not exist. A correlation between the gamma probability values
and the precision values does not exist at all. In terms of the a-stabil confidence
measure a general statement about a stable correlation cannot be made since a
certain correlation is only found in figure 5.1 A and B where a small amount of data
set A is used for training. This leads to the assumption that either the confidence
measures do not provide a meaningful estimate of the quality of the recognized
motion units or the amount of confidence values used for evaluation within specific
confidence value ranges is too low to enable a meaningful evaluation. Consequently,
the frequency of confidence values within each confidence value range as well as the
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Figure 5.3: The frequency of confidence and precision values provided by the baseline
systems trained using data set A. The values are provided by the baseline systems
A) BS(A, 5), B) BS(A, 25), and C) BS(A, 45).
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Figure 5.4: The frequency of confidence and precision values provided by the baseline
systems trained using data set B. The values are provided by the baseline systems
A) BS(B, 2), B) BS(B, 10), and C) BS(B, 18).
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Figure 5.5: The first 4 folds of the 10-fold cross-validation used for the HMM segmen-
tation. Ttest indicates the test set, Tini the initial train set, and S the segmentation
set.

frequency of precision values of all different motion units within different ranges is
calculated.

In figures 5.3 A - C and 5.4 A - C the frequency of the precision values as well as
the frequency of both confidence values are plotted. The cross marker represent the
frequency of precision values of all motion units within different ranges, the black
dots represent the gamma probability confidence values, and the squares represent
the a-stabil confidence values. It can be seen that for both confidence measures
almost all confidence values lie within the range (0.95,1]. Within the range [0,0.95]
the number of confidence values is very low. The same trend can be noticed with
the frequency of precision values in particular when more data is applied for training
the baseline system. This fact confirms the above mentioned assumption and leads
to the conclusion that a meaningful evaluation of the confidence measures cannot
be carried out because the number of precision values and confidence values within
all ranges except the range (0.95,1] are to low.

The baseline systems are confident (high confidence values) even if a little amount of
training data is applied. When a little amount of training data is used the frequency
of confidence values within the range (0.95,1] is always greater than the frequency
of precision values. This means that the system is overconfident (confidence values
higher than objective precision). When more training data is applied the baseline
system provides almost only high confidence values.

All above mentioned facts lead to the conclusion that a meaningful selection of
correct recognized motion units cannot be guaranteed by using the a-stabil and the
gamma probability confidence measures. This leads to the decision to discard the fil-
tering of segmented data and investigate the performance of the HMM segmentation
method without confidence-based filtering.

5.1.2.2 Evaluation of the HMM-based Segmentation Method

In this section different experiments concerning the evaluation of the HMM-based
segmentation method are presented. The experiments are carried out by using the
segmentation configurations I-III described in section 5.1.1. As mentioned in the
last section, the confidence-based filtering is discarded and the entire automatically
obtained segmentation is used to improve the baseline system.

In order to distinguish between the different developed recognition systems, specific
notations are assigned to different types of recognition systems. A recognition de-
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veloped by applying the HMM segmentation method in configuration I is defined as
follows:

RShmm,I(data, cm, ca, is), (5.1)

where data is the applied data set, cm is the number of manually segmented motion
sequences of each complex motion type used to initialize and train the baseline sys-
tem, ca is the number of automatically segmented motion sequences of each complex
motion type used for re-training, and is is the applied number of segmentation and
re-training iterations. The developed recognition systems in configuration II and III
have the same notation, but a different index (RShmm,II and RShmm,III).

The experiments are carried out in several sessions. In each session a different
baseline system is used for the segmentation task. The 10-fold cross-validation
mentioned in section 4.2.6 is modified to enable the evaluation of the segmentation
method. The data set is divided into three subsets. The first one is the test data
set whose size remains one tenth of the complete data set as explained in section
4.2.6. The second one is the training data set which is utilized to initialize and
train the baseline system. The size of this subset is varied in different experimental
sessions. The remaining part is the segmentation subset. This subset is segmented
by the baseline system. The partition of the subsets in every fold is different from
the partition of other folds. Figure 5.5 shows the first 4 folds of the 10-fold cross-
validation used in session 1. The test subset consists of 5 sequences, the training
subset of 5 sequences, and the segmentation subset of 40 sequences of each complex
motion type.

The evaluation of the HMM segmentation method in configuration I and II using
data set A is carried out in several sessions. In each session the number of data
used to initialize and train the baseline system is increased by 5, starting with 5,
and ending with 40 sequences of each complex motion type. The number of data
remaining for segmentation is decreased by 5, starting with 40, and ending with 5
sequences. In each session 3 segmentation and re-training iterations for improving
the quality of the segmented data are applied.

The results of the evaluation are shown in figures 5.6 A - C in which the performance
of the baseline systems used for the segmentation task is compared to the perfor-
mance of the resulting recognition systems. The gray bars represent the performance
of the baseline systems. The white bars represent the performance of the recogni-
tion systems using configuration I and the black bars represent the performance
of the recognition systems using configuration II. The lines on the bars represent
the standard deviation of MUERs between different cross-validation folds. cm is
the number of motion sequences of each complex motion type used to initialize and
train the baseline systems. ca is the number of additional automatically segmented
motion sequences of each complex motion type used for developing the new recogni-
tion system. As expected the performance of the recognition systems increases with
increasing the number of motion sequences used for training the baseline systems.
It can be noticed that there is no significant difference in the performance between
configurations I and II. Re-training the baseline system without a new initializa-
tion using the segmented data performs slightly better when the baseline system is
trained with a little amount of data. Using several segmentation and re-training
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Figure 5.6: The performance of the recognition systems using HMM segmentation
in configuration I and II and data set A. In A) 1, B) 2, and C) 3 segmentation and
re-training iterations are applied.
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Figure 5.7: The performance of the recognition system using HMM segmentation
in configuration III. call is the number of motion sequences of each complex motion
type used for training. ca is the number of HMM-segmented motion sequences used
for re-training. In each plot the performance using 3 different segmentation and
re-training iterations is illustrated. In A) BS(A, 5), B) BS(A, 10), C) BS(A, 15),
D) BS(A, 20), and E) BS(A, 25) are used for the initial segmentation task.
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Figure 5.8: The performance of the recognition systems using 3 segmentation and
re-training iterations in configuration III and data set A.

iterations does not improve the recognition systems. Actually, the recognition sys-
tems perform better when one segmentation and re-training iteration is applied. The
most interesting observation is that the baseline systems always perform better than
the resulting recognition systems.

The evaluation of the HMM segmentation in configuration III using data set A is
carried out by applying the same baseline systems as in configurations I and II. The
remaining data is segmented in several sessions. In each session 5 new sequences
of each complex motion type are segmented. The segmentation results are used
to re-train the recognition system. In each session 5 segmentation and re-training
iterations for improving the quality of the recognition system are applied.

In figures 5.7 A-E the performance of the resulting recognition systems using dif-
ferent baseline systems for the segmentation task are illustrated. As one can see
the resulting recognition systems show a small improvement only when the baseline
systems BS(A, 5) and BS(A, 10) is applied for the segmentation task. This improve-
ment, however, only remains for a few following segmentation sessions. Otherwise,
the performance decreases when more data are segmented and used for re-training.
In sessions with more initial training data for the baseline system the performance
decreases in every following segmentation session. Using several segmentation and
re-training iterations improves the performance slightly. In figure 5.8 an overview of
the performance of different recognition systems developed by using different base-
line systems and 3 segmentation and retraining iterations is given. The gray bars
represent the performance of the baseline systems. The white bars represent the
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performance of the resulting recognition systems. The lines on the bars represent
the standard deviation of MUER between different cross-validation folds.

The evaluation of the HMM segmentation method in configuration I and II using
data set B is carried out by starting with 2 motion sequences of each complex motion
type to initialize and train the baseline system. In each following session the number
of motion sequences is increased by 2. In the last session 16 motion sequences are
used to initialize and train the baseline system. The number of data remaining for
segmentation is decreased by 2 starting with 16 and ending with 2 sequences.

The results of the evaluation are shown in figures 5.9 A - C in which the performance
of the baseline systems is compared to the performance of the resulting recognition
systems. As one can see the resulting recognition system using one segmentation
and re-training iteration performs better than the baseline system when 2, 4, 6, 8,
and 10 motion sequences are used to initialize and train the baseline system. In the
remaining sessions the performance of the baseline systems is slightly better. Using
more segmentation and re-training iterations improves the performance slightly. In
the first three and in the fifth session the resulting recognition system performs bet-
ter when configuration II is applied with one segmentation and re-training iteration.
This is different when more segmentation and re-training iterations are applied. The
segmentation with configuration I performs better in almost all sessions. The best
performance gain using configuration I is an absolute improvement of 9.39% MUER
obtained by re-training the baseline system BS(B, 6) (32.81% MUER) with 12 addi-
tional HMM-segmented motion sequences of each complex motion type; the result-
ing recognition system RShmm,I(B, 6, 12, 3) has a performance of 23.42% MUER.
Using configuration II the best performance gain is an absolute improvement of
7.1% MUER obtained by re-training the baseline system BS(B, 8) (33.04% MUER)
with 10 additional HMM-segmented motion sequences of each complex motion type;
the resulting recognition system RShmm,II(B, 8, 10, 3) has a performance of 25.94%
MUER.

The evaluation of the HMM segmentation method in configuration III using data
set B is carried out by using the same baseline systems for the segmentation task
as in configurations I and II. The remaining training data is segmented in several
sessions. In each session 2 new motion sequences are segmented. The segmented
data is used to re-train the recognition system. This is repeated for 5 iterations in
order to improve the quality of the recognition system.

The results of the evaluation are shown in figures 5.10 A-E and 5.11. It can be seen
that in all sessions a certain improvement of the recognition systems compared to
the baseline systems exists. There is an obvious performance improvement when
at least 2 segmentation and re-training iterations are applied. Applying more than
2 iterations does not lead to a significant performance difference. The best per-
formance gain is an absolute improvement of 9.1% MUER obtained by re-training
the baseline system BS(B, 6) (32.81% MUER) with 10 additional HMM-segmented
motion sequences of each complex motion type; the resulting recognition system
RShmm,III(B, 6, 10, 3) has a performance of 23.71% MUER.

The HMM segmentation method leads to performance improvements when it is ap-
plied on data set B. The best performance improvements are achieved when only a
re-training without re-initialization is applied (configuration I and III). For this, only
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Figure 5.9: The performance of the recognition systems using HMM segmentation
in configuration I and II and data set B. In A) 1, B) 2, and C) 3 segmentation and
re-training iterations are applied.
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Figure 5.10: The performance of the recognition system using HMM segmentation
in configuration III. call is the number of motion sequences of each complex motion
type used for training. ca is the number of HMM-segmented motion sequences used
for re-training. In each plot the performance using 3 different segmentation and
re-training iterations is illustrated. In A) BS(B, 2), B) BS(B, 4), C) BS(B, 6), D)
BS(B, 8), and E) BS(B, 10) are used for the initial segmentation task.
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Figure 5.11: The performance of the recognition systems using 3 segmentation and
re-training iterations in configuration III and data set B.

the automatically computed transcriptions for motion sequences are needed. How-
ever, the HMM-based segmentation method leads to a reduction of the performance
when it is applied on data set A. In order to explain this behavior a further anal-
ysis is carried out in which the recognition performance with respect to individual
motion units in data set A is measured.

In figure 5.12 F-score values provided by two different systems are illustrated. The
black colored dots represent the F-score values provided by the the baseline system
BS(A, 5). The white squares represent the F-score values of the recognition system
after a re-training using 40 additional HMM-segmented motion sequences of each
complex motion type. It can be noticed that the F-score values of almost all motion
units are higher when HMM-segmented data is used for re-training. Only the F-
score values of a few motion units either remain equal or they decrease slightly. The
greatest decrease of 0.26 from F-score 0.91 to 0.65 is that of the motion unit with
index 36 which is the motion unit ”rest position”.

Motion unit ”rest position” in data set A represents the pauses at the beginning
and the end of a complex motion, but it also represents the artificially added short
pauses as mentioned in section 3.2. Therefore it occurs very often in data set A,
which means that a decrease of its F-score value has a great negative impact on
the overall performance of the recognition system. The low F-score value of 0.65
is derived from a precision value of 0.99 and a recall value of 0.49. Such a high
precision value implies that almost all ”rest positions” that occur in the hypotheses
are recognized correctly. The low recall value indicates that the correctly recognized
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Figure 5.12: A comparison between F-score values of motion units provided by a
recognition system trained with only 5 manually segmented motion sequences of
each complex motion type and a recognition system trained with 5 manually and 40
HMM-segmented motion sequences of each complex motion type.

”rest positions” are about half the existing ones. These facts lead to the conclusion
that the hypotheses provided by the recognition system only contain half of the
existing ”rest positions”. This can be seen in figure 5.13 in which the occurrence
frequency of all motion units in the reference sequences as well as in the hypotheses
of two different recognition systems is illustrated. In 5 reference sequences of each
complex motion type the mean occurrence frequency (10 cross-validation folds) of
”rest position” amounts to 162.3. A similar frequency of 153 is found in hypotheses
provided by a baseline system trained with 5 motion sequences of each complex
motion type. The frequency, however, extremely decreases to 81.2 in hypotheses
provided by the baseline system retrained by using 40 additional HMM-segmented
motion sequences of each complex motion type. This leads to a high number of
deletions during the calculation of the MUER.

A high number of deletions can arise because the respective HMM is somehow de-
fective. This can happen when an HMM is mis-trained by using false or unsuitable
training data. Consequently, the HMM-based segmentation of motion unit ”rest
position” was analyzed by comparing it to the manual segmentation.

The comparison is carried out by using two samples of segmented data. The first
sample (sample I) contains 40 HMM-segmentations of each complex motion type
computed by a baseline system initialized and trained with 5 motion sequences of
each complex motion type. The second sample (sample II) consists of 35 HMM-
segmentations of each complex motion type computed by using a baseline system
initialized and trained with 10 motion sequences of each complex motion type. The
segmentation process is carried out by using segmentation configuration I. The per-
formance obtained using sample I is 32.7% MUER and that obtained using sample
II accounts 26.7%.

The comparison of the HMM-segmentations in samples I and II and the respective
manual segmentations is carried out frame-wise. Each frame of the motion unit
”rest position” in the HMM-segmentation is compared to the respective frame in the
manual segmentation. This way the matching rate of the motion unit ”rest position”
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Figure 5.13: The frequency of motion units in reference sequences and in two differ-
ent types of hypotheses. The first type is provided by the baseline system trained
with 5 manually segmented sequences of each complex motion type from data set A.
The second type is provided by the recognition system re-trained by using additional
40 HMM-segmented sequences of each complex motion type.

in the HMM-segmentation and all motion units in the manual segmentation can be
determined. In addition, the average lengths of the motion unit ”rest position” in
the HMM-based and in the manual segmentation are computed and compared.

In figure 5.14 the results of the frame-wise matching is illustrated. One can see that
only 61.7% of the ”rest position” frames in the HMM-segmentation actually match
the ”rest position” frames in the corresponding manual segmentations. The remain-
ing 38.3% of frames are distributed among the other motion units. The average
length of the motion unit ”rest position” in the HMM-segmentations is 18.1 frames
which increases compared to the average length of 12.2 frames in the manual seg-
mentation. This is a growth of 148%. A similar result is obtained by the comparison
using sample II. In this case the matching rate of the motion unit ”rest position”
accounts 64.1% and the average length of the HMM-segmentations accounts 16.6
frames. In this case the growth of average length amounts to 136%.

In order to show that the matching rate calculation is principally meaningful the
matching rate for a motion unit with a high F-score is calculated. For this calculation
the motion unit with index 40 (see figure 5.12) is chosen which is the motion unit
”take bowl”. The matching in conjunction with sample I provides a matching rate
of 98.9%. The length of the motion unit decreases from 73.5 frames in the manual
segmentation to 56.8 frames in the HMM-segmentation. This is a negative growth
to 77%. The matching result associated with sample II is almost identical. The
matching rate accounts 98.7%. The average length of the motion unit in the HMM-
segmentations accounts 67.1 (91%) which is closer to the average length in the
manual segmentation.

The above mentioned analyses confirm the assumption that the HMM of the motion
unit ”rest position” is mis-trained by using defective and unsuitable segmentations.
More than one third of the frames in the HMM-segmentations of ”rest position”
belong to other motion units. Consequently, the resulting HMM does not represent
a pure version of the motion unit ”rest position” and therefore the recognition sys-
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Figure 5.14: The matching rate between the automatically obtained motion unit
”rest position” and all motion units in the manual segmentation. Motion unit index
36 represent motion unit ”rest position” in the manual segmentation.

tem does not recognize it appropriately. This leads to a great number of deletions
and to a significant decrease of the overall performance of the recognition system.
Nevertheless, the increased F-score values of many other motion units after the re-
training using HMM-segmentations (see figure 5.12) and the results of the evaluation
using data set B imply that the HMM-based segmentation method is an appropri-
ate automatic segmentation method and it has a great potential to be applied as a
semi-automatic segmentation method.

5.2 Unsupervised Automatic Segmentation

In the previous section an approach for supervised model-based automatic segmen-
tation was introduced. In this section an unsupervised automatic segmentation
approach based on PCA is presented and evaluated.

Unsupervised motion segmentation can be divided into two tasks. The first one deals
with finding segment boundaries in motion sequences in order to divide complex
motions at a high level of abstraction into several primitive motion units at a lower
abstraction level.

Labeling is the second task required when unsupervised segmentation is applied.
The labeling task is concerned with the assignment of detected motion segments to
different classes of primitive motion units.

In the next sections the two above mentioned tasks are discussed in more detail.

5.2.1 PCA-based Automatic Segmentation

The most common approach for unsupervised automatic segmentation is to set seg-
ment boundaries in data trajectories where local minima and/or maxima or where so
called zero-crossings are found. The main problem with this approach is the multi-
dimensionality of motion data. The segment boundaries have to be set at the same
time instance for all features, but the local minima, maxima, and zero-crossings
are shifted relatively to each other. One approach is to segment the trajectories of
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all data features separately and merge those which reside in the same interval. As
mentioned in [FMJ02] this approach has proven to be problematic because segment
overlapping cannot be avoided. In other approaches a single segmentation feature is
derived out of all data features by either applying a weighted sum of all data features
or by calculating new quantities, e.g. a centroid of different joints, or by choosing
or extracting a single feature out of all data features that is most representative for
the whole data. The derived segmentation feature can then be explored for minima,
maxima, or zero-crossing.

Typically, in large feature spaces the data variability in the feature trajectories is
only found in a specific low-dimensional subspace dependent on the motion type.
Finding the subspace, where the most data variability takes place, would reduce the
multi-dimensional problem of segmentation because only a small number of features
(in the low-dimensional subspace) have to be taken into account for deriving a new
segmentation feature. This can be achieved by applying feature space reduction
or rather feature extraction techniques. One of the most effective approaches for
feature space reduction and feature extraction is the PCA.

The PCA is a transformation of the feature space into a new space where the new
features are least correlated and the variance is maximized. In his book [Bis06],
Bishop defines the PCA in two ways:

1) in the maximum variance definition the PCA is described as an orthogonal pro-
jection of data onto a lower dimensional linear vector space where the variance of
projected data is maximal.

2) in the minimal error definition the PCA is described as a linear projection, where
the projection error is minimal; the projection error is defined as the average square
distance of a data point and its projection.

To explain the first definition as stated in [Bis06] in more detail consider the data
set

x = {x1, x2, . . . , xn} (5.2)

with dimensionality d, and a projection vector u (uTu = 1) which projects the data
onto a one-dimensional space (d′ = 1). The direction of the one-dimensional space
is defined in dependence of the direction of the d-dimensional projection vector u.
The result of the projection is given by the scalar values

x′ = {uTx1, uTx2, . . . , uTxn} (5.3)

The mean of x′ is

x̄′ = uT x̄, (5.4)

where

x̄ =
1

n

n∑
i=1

xi (5.5)
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is the mean of data set x. The variance of the projected data is given by

var(x′) =
1

n

n∑
i=1

(uTxi − uT x̄)2 = uTCu (5.6)

where C is the covariance matrix of data set x defined by

C =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T . (5.7)

By using a Lagrange multiplier λ with the constraint uTu = 1, the projected variance
uTCu can be maximized with respect to u by maximizing

uTCu+ λ(1− uTu). (5.8)

This can be achieved by setting the derivative of (5.8) with respect to u equal to
zero, where a stationary point is found when

Cu = λu (5.9)

which means that u must be an eigenvector of C. By left-multiplying (5.9) by uT ,
the variance is given by

uTCu = λ (5.10)

This means that the projection variance is maximized when the projection vector u
equals the eigenvector with the largest eigenvalue λ. This eigenvector is called the
first principal component.

To consider the case, where d > d′ > 1, the optimal linear projection for which the
projected data is maximized, is given by the d′ eigenvectors u1, . . . , ud′ of the data
covariance matrix C that correspond to the d′ largest eigenvalues λ1, . . . , λd′ .

The first extracted principal component or a linear combination of a few first com-
ponents can be applied to derive a segmentation feature which can be analyzed for
segmentation criteria like minima, maxima, or zero-crossings.

A segmentation criterion has to be selected depending on the information type com-
prised in the motion data. For motion data which comprises velocity information
of joint angles or markers, the zero-crossing segmentation criterion might be more
appropriate because a velocity equal zero indicates a short time non-activity of the
joint or marker. Whereas for motion data which comprise marker positions or joint
angle information a minima and/or maxima segmentation criterion might be more
convenient because a minimum or maximum value of a marker position or a joint
angle indicates a maximum deflection or a turning point of a certain motion.

In this work the first principal component is used to derive a segmentation feature
since it can be assumed that it already contains enough information to carry out a
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meaningful segmentation process. The segmentation criterion is to set a segmenta-
tion boundary where relevant local minima and maxima are found.

Consider a complex motion sequence x as follows:

x = x1x2 . . . xt, (5.11)

where xi is frame i and t is the motion sequence length. The motion frames are
considered as data points in order to calculate the PCA. The first component u1
is applied as projection vector in order to derive a one dimensional segmentation
feature. The trajectory x′ of the segmentation feature is given as follows:

x′ = uT1 x = x′1x
′
2 . . . x

′
t. (5.12)

In figure 5.15 the feature trajectories of a motion sequence of complex motion type
”rolling pastry” are plotted. The motion sequence projected by using the first com-
ponent as projection vector is illustrated in figure 5.16.
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Figure 5.15: A motion sequence of type ”rolling pastry”. It can be seen that only a
few features are involved in the motion activity.

In the first step of the segmentation algorithm the local minima and maxima in x′

are localized by using the sliding window technique. A sliding window of a specific
length is moved over x′ to localize maxima and minima where the value in the
middle of the window is either greater than all neighboring values in the window
for a maximum or less than the neighboring values for a minimum. The sliding
window technique works fine only if smooth data trajectories are available. Hence,
either a smoothing algorithm has to be applied to smooth the data trajectories or
other algorithms for localizing minima and maxima have to be used. In this work
the Savitzky-Golay smoothing filter [Orf96] implemented in MATLAB is applied to
smooth the data trajectories. The set of found local minima and maxima is given
as follows:

M = {x′i|x′i is a local minimum or a local maximum}, (5.13)

where M is sorted and the values are alternately arranged, i.e. a minimum is followed
by a maximum and vise versa. In figure 5.16 an example of detected local minima
and maxima in the segmentation feature trajectory is illustrated.
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In the second step segments between a minimum and a maximum or vice versa are
localized. The absolute value of the minimum-maximum difference has to exceed
a threshold value θs which is dependent on the range r of all feature values. The
range r of feature values x′ is given by

r = max(x′)−min(x′) (5.14)

The threshold is given by the function

θs(a) =
r

a
, (5.15)

where a has to be chosen appropriately.

A segment is detected when

|M(i)−M(i+ 1)| ≥ θs. (5.16)

In figure 5.17 an example of segment detection is illustrated.

This kind of segment detection leads to gaps between the detected segments. In the
third step of the segmentation algorithm, the gaps among the found segments are
either closed or considered as segments. For this, a second threshold value θg has
to be chosen. If the gap is greater than θg then the gap is considered as a segment,
whereas if the gap is smaller than θg the boundaries of the neighboring segments
are merged to close the gap by setting the new boundary at a previously found
maximum or minimum that is as close as possible to the center of the gap.

In order to avoid the building of small segments a third threshold θl for the segment
length has to be applied. The segmentation algorithm removes each segments with
a length less or equal θl. Figure 5.18 illustrate the boundary detection of the motion
sequence plotted in figure 5.15

The result of the segmentation algorithm is a set B of m boundaries which are given
as follows:

B = {b1, b2, . . . , bm|1 ≤ bi < bj ≤ t} (5.17)

The PCA-based segmentation algorithm is formally defined as follows:

1. Calculate the first component u1 of motion sequence x using PCA

2. Compute the segmentation feature x′ by projecting x using u1 as projection
vector

3. Find minima and maxima in x′

4. Find relevant segment boundaries among the found minima and maxima

5. Update segment boundaries by removing gaps between found segments

6. Update segment boundaries by removing small segments
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Figure 5.16: The projection of complex motion ”rolling pastry” using the first princi-
pal component as projection vector. The first component is computed by using the
motion data plotted in figure 5.15. The black dots are local minima and maxima
detected by applying the sliding window technique.
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Figure 5.17: Segment detection using threshold θs(8). As can be seen all segments
are detected except the first and the last two ones which do not satisfy the threshold
condition.
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Figure 5.18: Boundary detection after removing gaps and small segments.
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5.2.2 Labeling of Motion Unit Segments

In the previous section a method for detecting segment boundaries in motion data
trajectories was introduced. However, boundary detection is only one of two tasks
required by the segmentation process. In the second task the segments among the
detected boundaries are labeled in order to be applied as training data. Labeling in
this context means the assignment of detected segments to certain segment categories
or rather segment classes which contain similar kinds of motion segments. The
distinct segment classes represent the distinct kinds of motion units. The assignment
of segments to distinct segment classes can be achieved by applying a cluster analysis.

Cluster analysis is known as an unsupervised learning problem which can be used
to organize a set of objects into groups or classes each containing a subset of objects
that are somehow similar. The similarity between objects is defined by a similarity
or a distance measure which depends on the task, the type of objects, and the feature
space. The definition of the distance measure has a big impact on the effectiveness
of the clustering algorithm.

There are several options for defining a distance measure for human motion data
segments, e.g. dynamic time warping or probabilistic distance measures. These,
however, increase the development and computational effort compared to simpler
distance measures like the Euclidean distance. Moreover, it is not guaranteed to
get better results if complex distance measures are applied. Hence, in this work the
Euclidean distance measure in conjunction with a segment length normalization is
applied.

Consider a set S of n motion data segments which have to be clustered

S = {S1, S2, . . . , Sn}, (5.18)

where Si is the motion segment i in set S consisting of ti frames.

A motion data segment Si of length ti can be described as follows:

Si = (f i
1f

i
2 . . . f

i
d)

T , (5.19)

where f i
j is the trajectory of feature j in segment i and d is the number of features

in the motion data. The feature trajectory f i
j can be given as follows:

f i
j = xij1x

i
j2 . . . x

i
jti
, (5.20)

where xijk is the value of feature j at time k in segment i.

To calculate the Euclidean distance of two Segments Sa and Sb a length normaliza-
tion has to be applied first. This is achieved by changing the length of one segment
to fit the length of the other segment. This is done by either adding interpolated
data points to the trajectories of the data segment if it has to be enlarged or by
removing data points from the trajectories of the data segment if it has to be down-
sized. After the normalization of the segment length to t frames the distance of



66 5. Automatic Segmentation

each feature trajectory fa
j in segment Sa to the according feature trajectory f b

j in
segment Sb can be calculated as follows:

D(fa
j , f

b
j ) =

√√√√ t∑
k=1

(xajk − xbjk)2. (5.21)

Since it is not needed for distance comparison the root of the summation in (5.21)
is not calculated in order to minimize the computational effort. Thus, the distance
measure is then defined as follows:

D(fa
j , f

b
j ) =

t∑
k=1

(xajk − xbjk)2. (5.22)

In order to calculate the distance between the two segments Sa and Sb the distances
of all trajectories of segments Sa and Sb are summed as follows:

D(Sa, Sb) =
d∑

j=1

D(fa
j , f

b
j ) (5.23a)

=
d∑

j=1

t∑
k=1

(xajk − xbjk)2. (5.23b)

After defining a distance measure for motion data segments, an appropriate cluster-
ing algorithm has to be found. There are several algorithms which can be applied
for clustering. One of the most known and most applied clustering algorithms is the
k-means clustering algorithm.

The k-means algorithm is a simple and at the same time an effective clustering
algorithm. The main idea behind it is to determine a number of clusters or classes
a priori and represent each of them by a centroid in the feature space determined
either manually or randomly. Each object in the set is then assigned to a centroid
with the least distance according to the defined distance measure. The centroid of
each cluster is then recalculated to be centered among the objects in the respective
cluster. The last two steps are repeated for a specific number of iterations or until
no changes in the recalculation of centroids are noticed.

The recalculation or update of the centroid location is usually done by calculating
the mean of objects in the respective cluster. In this work the location update of the
centroids is achieved in three steps. In the first step the length of the new centroid is
calculated to become the average length of all segments in the respective cluster. In
the second step the length of all segments in the cluster is normalized according to
the new length of the centroid. Finally, in the third step, the mean of all segments is
calculated by summing the trajectories of all segments in the respective dimensions
and divide the sum by the number of segments. The mean of all segments becomes
the new centroid of the respective cluster.
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In order to avoid the underrepresentation of some motion units in the recognition
system the number of clusters is updated at the end of the clustering task. Clusters
containing a segment number smaller than a defined threshold θC are discarded. The
segments in the discarded clusters are assigned to the remaining clusters according
to the distance measure mentioned above.

The k-means algorithm applied in this work is formally defined as follows:

1. Define the number of clusters n

2. Define the number of iterations i

3. Define threshold θC

4. Choose n segments out of the segment set randomly to become the centroids
of the clusters

5. Assign each segment to the nearest centroid according to the defined distance
measure

6. Update the location of each centroid by calculating the mean of segments in
the respective cluster

7. Repeat steps 5 and 6 i times

8. For all clusters: if the amount of segments in the cluster is smaller than θC
then discard the cluster and assign segments to the remaining clusters

5.2.3 Experiments

In section 5.2 an unsupervised automatic segmentation approach for human motion
data was introduced. In this section the experiments carried out to evaluate this
segmentation approach are presented. The experiments are conducted by using data
set A and B.

For each data set (A and B) the experiments are conducted in three different phases.
In the first phase the segmentation method introduced in section 5.2.1 is applied to
find segmentation boundaries within the complex motion sequences. In the second
phase the motion segments between the detected boundaries are labeled by using
the clustering method presented in section 5.2.2. Hence, the segmentation task is
completed by segmenting the complex motion sequences and by assigning a spe-
cific motion unit label to each motion segment. In the third and last phase the
HMM-based recognition system introduced in section 4.2 is evaluated by using the
segmented data provided from phases one and two.

The first phase is carried out in different experimental sessions. For each data set
A and B 6 different experimental sessions are conducted. In each session a different
threshold value θs(a) is used by setting different values for a in (5.15). The values
used for a are 4, 6, ..., 14. Threshold θg is set to 20 and threshold θl is set to 10.

In order to start the second phase, namely the clustering phase, the number of initial
clusters has to be specified first. In this work the number of clusters is chosen to
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a Motion Unit Total Segment Average Segment MUER (%) σ (%)
Count Count Length

4 39 4346 34.8 26.29 4
6 43 4586 32.9 26.85 3.26
8 41 4686 32.2 25.52 4.47
10 44 4747 31.8 27.23 4.53
12 44 4817 31.4 28.38 4.16
14 45 4862 31.1 27.84 4.41

Table 5.1: The results of the recognition systems using PCA-based unsupervised
automatic segmentation of data set A. The evaluation is carried out by using different
values of θs(a).

a Motion Unit Total Segment Average Segment MUER (%) σ (%)
Count Count Length

4 18 801 37.4 43.76 13.47
6 17 857 35 40.78 16.76
8 18 880 34.1 40.91 18.69
10 22 909 33 30 16.13
12 21 921 32.6 34.35 17.67
14 21 934 32.1 31.42 16.7

Table 5.2: The results of the recognition systems using PCA-based unsupervised
automatic segmentation of data set B. The evaluation is carried out by using different
values of θs(a).

be similar to the motion unit number obtained by the manual segmentation task.
Thus, for data set A 50 and for data set B 25 initial clusters are used. The clustering
task for data set A is executed with 15 clustering iterations. The clustering task for
data set B is executed with 10 iterations.

The third and last phase is carried out by using the HMM-based motion recognition
system mentioned above in conjunction with data sets A and B, and the segmenta-
tion results obtained by the unsupervised segmentation method. The evaluation is
conducted by using a 10-fold cross-validation. The configuration of the recognition
system is the same as described in section 4.2.

The recognition systems developed by applying the PCA segmentation method are
defined as follows:

RSpca(data, ca, a), (5.24)

where data is the applied data set, ca is the number of automatically segmented
motion sequences of each complex motion type used to initialize and train the recog-
nition system, and a is the value required to compute threshold θ(a).



5.2. Unsupervised Automatic Segmentation 69

M
ot

io
n 

U
ni

t L
ab

el
 In

de
x

Complex Motion Type

5
10

15
20

25
30

35
40

R
ol

lin
g 

P
as

tr
y

P
ur

in
g 

W
at

er

P
la

ni
ng

 A
pp

le

G
rin

di
ng

 C
of

fe
e

S
w

ee
pi

ng

G
ra

tin
g 

A
pp

le

S
tir

in
g

C
ut

tin
g 

C
ak

e

C
ut

tin
g 

A
pp

le

M
as

hi
ng

 P
ot

at
oe

s

M
ot

io
n 

U
ni

t L
ab

el
 In

de
x

Complex Motion Type

2
4

6
8

10
12

14
16

18
20

22

P
ou

rin
g 

W
at

er

G
ra

tin
g 

A
pp

le

S
tir

in
g

C
ut

tin
g 

F
ru

it

M
as

hi
ng

 P
ot

at
oe

s

F
ig

u
re

5.
19

:
T

h
e

d
is

tr
ib

u
ti

on
of

m
ot

io
n

u
n
it

s
d
er

iv
ed

b
y

th
e

P
C

A
-b

as
ed

se
gm

en
ta

ti
on

am
on

g
co

m
p
le

x
m

ot
io

n
ty

p
es

.
T

h
e

u
p
p

er
fi
gu

re
sh

ow
s

th
e

d
is

tr
ib

u
ti

on
fo

r
d
at

a
se

t
A

.
T

h
e

lo
w

er
fi
gu

re
sh

ow
s

th
e

d
is

tr
ib

u
ti

on
fo

r
d
at

a
se

t
B

.
T

h
e

d
ar

ke
r

th
e

ar
ea

th
e

m
or

e
of

te
n

a
m

ot
io

n
u
n
it

is
re

p
re

se
n
te

d
in

th
e

re
sp

ec
ti

ve
co

m
p
le

x
m

ot
io

n
ty

p
e.



70 5. Automatic Segmentation

The results of the evaluation are listed in table 5.1. As one can see the result does
not deviate much. The MUER ranges from 25.52% to 28.38%, the motion unit
count ranges between 39 and 45, and the average segment length lies between 31.1
and 34.8 frames. The best recognition performance of 25.52% MUER for data set
A is achieved by using θs(8). The initial amount of 50 clusters is reduced to 41
through the clustering process. The segment count in the whole data set is 4686
which is much smaller than the segment count of 6148 in the manual segmentation.
Consequently, the average length (32.2 frames) of the automatically obtained motion
units is greater than the average length of the manually obtained segments (24.6
frames).

The results of the evaluation with data set B are listed in table 5.2. As can be seen
the deviation of the performance using different threshold values θs(a) is greater
compared to the deviation of the performance using data set A. The MUER ranges
between 30% and 43.76%, the motion unit count ranges from 17 to 22, and the
average motion unit length lies between 32.1 and 37.4 frames. The best recognition
result of 30% MUER is achieved by using θs(10). The initial cluster number of
25 is reduced to 22 through the clustering task. The segment count in the whole
data set is 909 which is not quite far from the segment count of 964 in the manual
segmentation. The average segment length of 33 frames is similar to the average
segment length in the manual segmentation (31.1 frames).

Figure 5.19 shows the distribution of motion units derived by the unsupervised seg-
mentation task among the different complex motion types. One can see that each
complex motion type has a different distribution of motion units. Consequently, a
classification of the complex motion type can be achieved by applying a statistical
model that contains the distribution of available motion units for every complex
motion type. In order to prove this assumption an experiment with a simple classifi-
cation algorithm is carried out. The algorithm relies on the following score function:

scorec(h) =
1

n

n∑
i=1

dc(hi), (5.25)

where scorec is the score function for the complex motion type c, h is the hypothesis
generated by the recognition system consisting of n motion units, hi is motion unit i
in hypothesis h, and dc(hi) is the distribution of motion unit hi for complex motion
c. The distribution function is given as follows:

dc(u) =
cc,u
cc
, (5.26)

where cc,u is the occurrence frequency of motion unit u in the segmentations of
complex motion c, and cc is the number of all motion units in segmentations of
complex motion c.

The above mentioned classification algorithm computes the score of a specific hy-
pothesis for every complex motion type. The complex motion type with the highest
score is chosen as the classification result. For every cross-validation fold the pro-
vided hypotheses by the recognition system can be applied for classification. Con-
sequently, hypotheses for the entire data sets A and B exist in order to be applied
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by the classification algorithm. For data set A a classification error rate of 9.6% is
achieved. Almost all mis-classifications are due to confusions between complex mo-
tion types ”grating apple” and ”planing apple” which are very similar motions. For
data set B a classification error rate of 12% is achieved. Almost all mis-classifications
are due to confusions of complex motion type ”Mashing Potatoes” with complex mo-
tions ”pouring water” and ”stirring”.

In order to compare the motion units obtained by the unsupervised segmentation
method to the motion units in the manual segmentation a frame-wise comparison
is carried out. For every frame in every motion sequence the corresponding motion
unit types in both segmentations are compared. In this way the frame count for each
motion unit matching combination can be computed. Consequently, two normalized
matrices

A = (aij) =

(
cij
ci
· 100%

)
(5.27)

and

M = (mij) =

(
cij
cj
· 100%

)
(5.28)

can be created, where cij is the count of frames which simultaneously belong to the
automatically obtained motion unit i and the manually obtained motion unit j, ci
is the overall frame count of the automatically obtained motion unit i, and cj is the
overall frame count of the manually obtained motion unit j.

The matching frame count in A is normalized by the frame count of the automatically
obtained motion units. This means that each row in A contains the matching rate
distribution of a single automatically obtained motion unit among the motion units
in the manual segmentation. The sum of a row in A equals 100%.

M contains the matching frame count normalized by the frame count of the motion
units in the manual segmentation. In this case the columns in M contain the match-
ing rate distributions of the manually obtained motion units among the motion units
in the automatic segmentation. The sum of a column in M equals 100%.

In order to apply a matching algorithm to carry out an explicit matching between
automatically obtained motion units and manually obtained ones the harmonic mean
of the matching rates in matrices A and M is calculated. The harmonic mean is an
appropriate measure to calculate the average of rates. The result of the harmonic
mean calculation is a matrix H defined as follows:

H = (hij) =

(
2 · aij ·mij

aij +mij

)
. (5.29)

Figures 5.20 and 5.21 show the matching distribution matrices for data set A and B.
It can be noticed that there is no explicit matching of a single automatically obtained
motion unit to a single manually obtained one, but there is rather a motion unit
multi-matching. Multi-matching in this context means that several motion units in
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Motion Unit Index of Manual Segmentation
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Figure 5.20: The matching between the automatically obtained motion units and
the manually obtained ones in data set A. The darker the area the higher is the
matching. A black area indicates a matching of 100% whereas a white area indicates
a matching of 0%.
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Figure 5.21: The matching between the automatically obtained motion units and
the manually obtained ones in data set B. The darker the area the higher is the
matching. A black area indicates a matching of 100% whereas a white area indicates
a matching of 0%.
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Figure 5.22: A comparison of a PCA-segmentation in the upper part of the figure and
a manual segmentation in the bottom of the figure. The numbers in the unsupervised
segmentation indicate the index of motion unit labels.

the automatic segmentation can either match a single motion unit in the manual
segmentation and/or vice versa.

In the first case two or more motion unit types can match a single motion unit in
the manual segmentation. This is due to the segmentation criterion used in the
PCA segmentation method. In order to allow a robust segmentation the segmenta-
tion criterion is to set segment boundaries where minima or maxima occur in the
trajectory of the segmentation feature, i.e. a segment is between a minimum and a
maximum. In some cases, however, some motion units in the manual segmentation
lie between two maxima or two minima. Each of these motion units corresponds to
two neighboring motion units in the automatic segmentation. This can be seen in
figure 5.22; the motion unit ”take bowl” in the manual segmentation, for instance,
matches the motion units ”13” and ”1” in the automatic segmentation and the same
can be noticed with motion unit ”put bowl back” which matches the motion units
”7” and ”1” in the automatic segmentation.

In the opposite case a single automatically obtained motion unit can match several
manually obtained motion units. This can be seen in figure 5.22; motion unit ”1”,
for instance, match a part of motion unit ”take bowl” and a part of motion unit ”put
bowl back”. This is due to the similarity of motion units ”take bowl” and ”put bowl
back”. The similarity of the trajectories leads to the assignment of motion units or
parts of them to the same clusters by the clustering algorithm.

Due to the impossibility of a one-to-one motion unit matching a double motion unit
matching algorithm is applied in order to enable a double matching in each direction.
The algorithm allows each motion unit to match at most two motion units in the
other segmentation type. In order to avoid meaningless matchings a threshold θh
for the harmonic mean is applied. Matchings with a higher harmonic mean than
θh are considered as valid matchings. This way the motion units can have a double
matching, only one matching, or no matching at all. The matching algorithm is
formally described as follows:

1. Create a one-to-one matching list L containing the matches inH with harmonic
mean greater than θh

2. Sort L in descending order
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Automatic Segmentation Manual Segmentation Harmonic
Motion Unit Index Motion Unit Label Mean (%)

1
Take bread 36.8
Put bread back 32.5

2 Rest position 41.9
3 Take glass 48.0
4 Take bowl 37.5
5 Take spoon 43.1
7 Pour 40.6
8 Put spoon back 63.0
9 Take masher 59.3

12
Roll 44.8
Sweep 31.5

14 Put bottle back 38.5
15 Cut apple 68.0

16
Slice 52.1
Grate 48.2

17 Sweep 58.5
18 Put glass back 45.5
19 Put bottle back 33.3
20 Cut bread 72.5

22
Put grinder back 34.1
Put Slicer back 31.1

23 Take rolling pin 30.2
24 Grind 71.7

25
Take apple right hand 35.8
Take Slicer 31.3

26 Put bread back 36.7

27
Grind 41.8
Take grinder 37.9

28
Take bowl 50.2
Put bowl back 32.3

29
Take masher 38.5
Grasp bowl 31.5

31
Take broom and dustpan 46.0
Put back broom and dustpan 40.5

32
Put back broom and dustpan 48.5
Take broom and dustpan 43.6

33 Pour 66.8

35
Put apple back right hand 44.4
Put Slicer back 40.7

39
Stir 58.7
Release bowl 40.2

40 Put bowl back 43.4
41 Put masher back 52.2

Table 5.3: The results of the double matching between automatically and manually
obtained motion units in data set A.

3. For each matching i in L

(a) If both motion units in i have less than two valid matchings then

i. Set matching i as valid

ii. Increase the number of valid matchings for both motion units in i by
one

4. Set all valid matchings as matching result

Tables 5.3 and 5.4 show the results of the matching algorithm applied to the seg-
mentations of data set A and B. The matching applied to the segmentations of data
set A results in matching 31 of 41 (75.6%) automatically obtained motion units with
32 of 49 (65.3%) motion unit in the manual segmentation. The total number of valid
matchings is 43. The discarded motion units in the manual segmentation are ”grasp
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Automatic Segmentation Manual Segmentation Harmonic
Motion Unit Index Motion Unit Label Mean (%)

1
Take bowl 44.9
Put bowl back 37.2

2 Rest Position 70.8
4 Put spoon back 56.4
5 Take knife 32.1
7 Put bowl back 55.1
9 Mash 56.1

10
Cut apple 82.7
Grasp apple 30.8

11 Stir 75.5

12
Put grater back 43.9
Take grater 43.5

13 Take bowl 52.0

14
Put knife back 54.6
Release apple 41.0

15
Put bottle back 54.9
Pour 33.0

16 Pour 67.8
17 Put masher back 50.1

18
Take knife 40.1
Put apple back left hand 37.2

19 Put bottle back 34.7

20
Put grater back 52.0
Put apple back right hand 51.5

21
Grate 58.2
Take apple right hand 41.3

22
Take bottle 35.7
Take masher 30.3

Table 5.4: The results of the double matching between automatically and manually
obtained motion units in data set B.

apple”, ”grasp bread”, ”grasp grinder”, ”grasp rolling pin with both hands”, ”mash”,
”put apple back left hand”, ”put grater back”, ”put knife back”, ”put rolling pin
back”, ”release apple”, ”release bread”, ”release grinder”, ”release rolling pin”, ”take
apple left hand”, ”take bottle”, ”take knife”, and ”take grater”. 12 automatically ob-
tained motion units have a double matching. In the opposite case 11 motion units
in the manual segmentation have a double matching. The best matching according
to the harmonic mean of 72.5% is the matching between the automatically obtained
motion unit with index 20 and the motion unit ”cut bread”.

The number of valid matchings of motion units in the segmentations of data set
B is 28. 19 of 22 (86.4%) automatically obtained motion units are matched with
22 of 24 (91.7%) motion units in the manual segmentation. Only motion units
”Take apple left hand” and ”Take spoon” in the manual segmentation do not have
an appropriate matching. The number of automatically obtained motion units with
double matching is 9. The number of double matchings of motion units in the
manual segmentation is 6. The best matching with a harmonic mean of 82.7% is
the matching between the automatically obtained motion unit with index 10 and
motion unit ”cut apple” in the manual segmentation.

As a conclusion, it can be stated that the unsupervised segmentation method works
fine with both data sets A and B. Compared to the performance of the baseline sys-
tems BS(A, 45) (16.13% MUER) and BS(B, 16) (19% MUER) the performance of
the recognition systems RSpca(A, 45, 8) (25.5% MUER) and RSpca(B, 18, 10) (30%
MUER) can be considered as reliable precisely because no human intervention is
required at all. The manual segmentation provides better results only if at least
10 complex motion sequences of each complex motion type are segmented and used
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for initialization and training. The distribution of motion units among the different
complex motion types is distinct which allows a classification of complex motion se-
quences if needed. The segmentation matching of both data sets is not optimal. This
is due to the fact that the unsupervised segmentation method provides a different
kind of motion units which is dependent on the segmentation criterion. However, the
applied double matching algorithm based on the frame-wise motion unit comparison
provides an appropriate matching considering the multi-matching characteristics of
the motion units.



6. Model Transfer

6.1 Model Transfer Technique

The model transfer technique is based on the idea of developing a recognition system
by transferring models from one or more existing recognition systems to a new
recognition system. This method can be applied in order to avoid the manual
segmentation effort.

The model transfer technique is known in the field of ASR as the CLT technique. In
[SW01] it is applied to transfer existing phoneme models from one or more source
recognition systems to a recognition system for a new target language. For this,
phonemes of the source languages are assigned to similar phonemes of the target
language. This assignment is called phoneme mapping.

In [SW01] two methods of phoneme mapping are presented. The first one is a
manual mapping method which relies on expert knowledge. In this method an
expert has to decide which phonemes of the source languages are most similar to the
phonemes of the target language. This way the phonemes of the source languages
are assigned or mapped to phonemes of the target language. The other method is
an automatic data-driven mapping method where little amount of training data of
the target language is used to calculate the optimal mapping. Both methods require
a certain effort of time and costs. However, it is much lower than the effort caused
by the transcription and segmentation processes for the training data of the target
recognition system.

Similar to the CLT technique, motion unit models in a recognition system build
by using motion data from a certain data set could be transferred to another mo-
tion recognition system that is applied to recognize similar motion units in another
motion data set. In this work the model transfer technique is investigated using
three different variants: the first one is the pure model transfer technique; the sec-
ond variant is a combination of the model transfer technique and the HMM-based
automatic segmentation method introduced in section 5.1.1; in the third variant
the model transfer technique is combined with a further adaptation using different
amounts of transcription data from the target data set.
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All three variants of the model transfer technique investigated in this work are
evaluated by using motion data sets B and C. The motion units in motion data
set B are used as source motion units. The target recognition system is built to
recognize motion units of data set C. Both data sets are performed by the same
female person. The complex motion types in both data sets are equal, but the
motions are performed somehow differently. In data set B primitive motions (motion
units) are always performed consecutively while in motion data set C some primitive
motions are performed almost simultaneously. In data set B the objects on the
counter top are always positioned on the same places (see figure 3.3) while in data
set C the object positions are varied between different recording sessions (see figure
3.4). In data set C only the following positions are permitted to be occupied: back
right, back left, center, front right, front left.

Since the motion information of fingers is not covered by the motion data applied in
this work, object specific grasping motions are not relevant in the recognition process.
Thus, it can be assumed that the motions of the complete arms toward specific object
positions on the counter top are more important. This means that the motion
development in certain motion units depends on the object positions. Therefore it
might be more appropriate to carry out the motion unit mapping according to the
object position in the motion unit and not according to the type of object. In this
work the motion unit mapping is carried out depending on the object positions on
the counter top. Since in data sets B and C the covered object positions are not
exactly the same (see figures 3.3 and 3.4) the nearest covered object positions in
data set B are chosen for the positions in data set C.

In data set B the positions on the counter top are covered by at most one object.
Thus, a multi-object mapping has to be carried out. The multi-object mapping
in this context means that only one motion unit model associated with a certain
object position in the source data set (data set B) is applied for mapping multiple
motion units associated with the same object position in the target data set (data
set C). Actually, the multi-object mapping is one of the problems that arise in the
mapping process and which can decrease the performance of the recognition system.
The second problem concerning the mapping process is the multi-position mapping.
The multi-position mapping takes place when a certain object position in the source
data set has to be used to map at least two different object positions in the target
data set.

As mentioned above the performance of the recognition system can decrease when
multi-object and multi-position mapping are applied. This is due to the fact that
the recognition system is not able to accurately distinguish between different motion
units which have the same source model. However, applying a statistical motion unit
model can help to overcome the mapping problems. Such a statistical motion unit
model that contains the occurrence probabilities of motion units supports the IBIS
decoder mentioned in section 4.2.3 in order to enable a reliable decoding. In this
work a bi-gram model built by using transcription data from the target data set
(data set C) is applied.

In the first variant of the model transfer technique applied in this work the trans-
ferred models are applied for recognizing motion units in the target data set without
further modifications. This pure variant of the model transfer technique can be for-
mally defined as follows:
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1. Define train set Tsource from source data set

2. Define test set Ttest from target data set

3. Define structure for recognition system Θsource

4. Initialize and train Θsource using Tsource

5. Define structure for recognition system Θtarget

6. Map HMMs of Θsource to HMMs of Θtarget

7. Test Θtarget using Ttest

The second variant of the model transfer technique is combined with the HMM-based
automatic segmentation method (Configuration I) presented in section 5.1.1. The
transferred models are applied to generate hypotheses/segmentations for the target
data set. The generated segmentations can be filtered by applying confidence based
filtering. The filtered segmentations are utilized to re-train the target recognition
system. A similar approach for ASR is presented in [VKS10]. The second variant of
the model transfer technique applied in this work can be formally defined as follows:

1. Define train set Tsource from source data set

2. Define test set Ttest from target data set

3. Define segmentation set S from target data set

4. Define threshold θC for confidence values

5. Define structure for recognition system Θsource

6. Initialize and train Θsource using Tsource

7. Define structure for recognition system Θtarget

8. Map HMMs of Θsource to HMMs of Θtarget

9. Repeat the following steps for n iterations

(a) Decode/Segment S using Θtarget

(b) Write segmentation results with confidence value ≥ θC into set TS

(c) Re-train Θtarget using TS

(d) Test Θtarget using Ttest

The third variant of the model transfer technique applied in this work is combined
with a further adaptation of the transferred HMMs by using different amounts of
transcription data. The adaptation, however, is carried out by applying the Viterbi-
based EM-algorithm for training mentioned in section 4.2.2. This way, the Gaussians
in the HMMs are not only modified by applying a transformation as usually done us-
ing conventional adaptation techniques, but they are completely re-estimated. This
means that this variant of the model transfer technique replaces the initialization
task which is usually carried out by using manually segmented data. This variant
of the model transfer technique can formally be defined as follows:
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1. Define train set Tsource from source data set

2. Define test set Ttest from target data set

3. Define adaptation set A from target data set

4. Define structure for recognition system Θsource

5. Initialize and train Θsource using Tsource

6. Define structure for recognition system Θtarget

7. Map HMMs of Θsource to HMMs of Θtarget

8. Re-train Θtarget using TA

9. Test Θtarget using Ttest

6.2 Experiments

In the last section different variants of the model transfer technique were introduced
and explained. In this section the experiments for the evaluation of this technique in
conjunction with human motion data is presented. The experiments are conducted
by using data sets B and C.

In order to apply the model transfer technique to the entire data set C a motion unit
mapping which includes the multi-object and the multi-position mapping problems
has to be carried out. The resulting motion unit mapping is shown in table 6.1. As
one can see only one motion unit in the source data set associated with a certain
object position is applied to map all motion units associated with the same object
position (multi-object mapping). Motion units ”take masher”and ”put masher back”
are used for mapping two positions namely front left and back left (multi-position
mapping). The motion units ”take bowl from position x” and ”put bowl back on
position x” in the target data set are mapped to motion units ”take bowl” and ”put
bowl back”. This is due to the fact that these motion units in both data sets are
performed by using both arms. Therefore, it can be assumed that a two arm motion
is similar to another two arm motion even if the position of the object ”bowl” is
different. The total number of mapped motion units is 65. This is exactly the
number of motion units in data set C.

The first experiment is carried out to evaluate the first variant of the model transfer
technique applied in this work. The source recognition system for this experiment is
initialized and trained by using all 100 motion sequences in data set B. The trained
models of the source recognition system are mapped to motion units in data set C
according to mapping table 6.1. The resulting target recognition system is tested by
using all 100 motion sequences of data set C. The recognition result is a MUER of
78.08% which is a very poor performance of the resulting recognition system. This
recognition system is referred to as

RSmt(B,C, 65), (6.1)
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Target Motion Unit Source Motion Unit

Grate Grate
Mash Mash
Pour Pour
Rest position Rest position
Stir Stir
Put object back on position back left Put masher back
Put object back on position back right Put bottle back
Put object back on position center Put spoon back
Put object back on position front left Put masher back
Put object back on position front right Put apple back right hand
Put bowl back on position x Put bowl back
Take object from position back left Take masher
Take object from position back right Take bottle
Take object from position center Take spoon
Take object from position front left Take masher
Take object from position front right Take apple right hand

Take bowl from position x Take bowl

Table 6.1: The mapping of motion units from data set B to all motion units in data
set C. Altogether 6 different objects are utilized to perform the complex motions.
Position x can be one of the 5 permitted positions in data set C.

where B and C are the source and the target systems, and 65 is the number of
transferred models.

The second experiment is carried out to evaluate the second variant of the model
transfer technique. In this experiment the model transfer technique is combined
with the HMM-based supervised segmentation method introduced in section 5.1.1.
The confidence-based filtering is discarded again and the complete hypotheses are
applied as segmentations for the re-training task. The experiment is conducted by
using a 5-fold cross-validation on data set C as mentioned in sections 4.2.6 and
4.2.7. The initial target recognition system is used to segment the training sets in
the cross-validation folds. The segmented data is then used to re-train the target
recognition system. The segmentation and the re-training is repeated for 10 itera-
tions. The results are shown in figure 6.1 A. The MUER using one segmentation and
re-training iteration after the model transfer amounts to 74.48%. The performance
is worse when 2 iterations are applied (76.78% MUER). The best performance of
73.12% MUER is achieved by using 10 segmentation and re-training iterations. This
is a minimal absolute performance improvement of 4.96% MUER compared to the
performance of the initial target recognition system. The application of more than
one segmentation and re-training iterations only leads to minimal performance im-
provements. The performance of the resulting recognition system is still poor which
makes further improvements necessary. The resulting recognition system is referred
to as

RSmt,s(B,C, 65, 20, is), (6.2)
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where B and C are the source and target systems, 65 is the number of transferred
models, 20 is the number of automatically segmented motion sequences of each com-
plex motion type used for re-training, and is is the number of applied segmentation
and re-training iterations.

In the next experiment the third variant of the model transfer technique is evaluated.
In this variant the model transfer technique is combined with a further adaptation of
the transferred models using transcription data for the target data set. The exper-
iment is conducted in 4 sessions. In each session different amounts of transcription
data is applied. In the first session 5 motion sequences of each complex motion
type are used (one sequence for each positioning configuration). In each following
session the number of motion sequences is increased by 5. In the last session 20
motion sequences are applied for adaptation. The test set consists of 5 motion se-
quences of each complex motion type. The experiment is carried out by using a
5-fold cross-validation. The results of this experiment as well as the results of the
two other experiments mentioned above are shown in figure 6.1 B. As one can see
the MUER decreases significantly even if a little amount of transcription data is
applied for adaptation. The performance of the transferred recognition system after
adaptation using the transcriptions of 5 motion sequences of each complex motion
type is 59.31% MUER. This is an absolute performance improvement of 18.77%
compared to the performance of the initial transferred system. The performance
using 20 sequences of each complex motion type for adaptation amounts to 36.02%
MUER. This is an absolute performance difference of 42.06% MUER. The resulting
recognition system is referred to as

RSmt,a(B,C, 65, ct), (6.3)

where B and C are the source and the target systems, 65 is the number of transferred
models, and ct is the number of motion sequences of each complex motion type used
for adaptation.

In figure 6.1 B the performance of the adapted recognition systems are compared
to the performance of the baseline systems BS(C, ci,t) and the recognition systems
RSm(C, 5, ct) presented in section 4.2.7. One can see that the baseline systems
always performs better than the adapted recognition systems. This is also the case
for the recognition systems initialized by using only 5 motion sequences of each
complex motion type and trained by using the same amounts of training data as
used for adaptation.

In order to investigate the effect of the multi-object and the multi-position map-
ping problems on the performance of the transferred recognition system a further
experiment is carried out in which only a subset of motion data set C is applied.
The subset consists of complex motion types ”stirring” and ”mashing potatoes”. For
each of these complex motion types only the motion sequences of one object position
per object is applied. This means that the total number of motion sequences to be
recognized is 10. The motion unit mapping is carried out as shown in table 6.2.
As one can see the multi-object and the multi-position mapping problems do not
occur in this mapping configuration which should lead to better recognition results.
However, it must be noted that the number of motion units to be recognized is
lowered from 65 mapped motion units when the entire data set C is applied to 9
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Figure 6.1: The model transfer technique applied on target data set C. In figure
A the performance of the target recognition system using different numbers is of
segmentation and re-training iterations is illustrated. Figure B illustrates the per-
formance of the target recognition system combined with adaptation.
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Target Motion Unit Source Motion Unit

Mash Mash
Rest position Rest position
Stir Stir
Put bowl back on position front right Put bowl back
Put masher back on position back left Put masher back
Put spoon back on position center Put spoon back
Take bowl from position front right Take bowl
Take masher from position back left Take masher
Take spoon from position center Take spoon

Table 6.2: The mapping of motion units from data set B to motion units of two
complex motions in data set C.

mapped motion units in this configuration. The source recognition system for this
experiment is initialized and trained by using all motion sequences in data set B.
The result is a MUER of 57.45% which is a better result compared to the result
of the first model transfer experiment mentioned above. However, this has to be
treated with caution because the number of mapped motion units is far lower than
in the first model transfer experiment and because the MUER of 57.45% is still too
low to be considered as a reliable performance.

The low MUER leads to the assumption that the motion units in data sets B and C
are too different to allow a meaningful application of the model transfer technique. In
order to prove this assumption an additional experiment concerned with transferring
models within the same data set is carried out. The experiment is conducted by
applying the model transfer technique on two complex motions from data set C.
The HMMs of one complex motion type are used as source models. The data of
the other complex motion type are used as target data. The source complex motion
type is ”mashing potatoes” while the target complex motion type is ”stirring”. For
every complex motion 25 sequences exist which are divided among 5 different object
positioning configurations. The motion unit mapping is carried out as shown in table
6.3. The number of mapped motion units is 22. The source recognition system is
initialized and trained by using all 25 motion sequences of the complex motion type
”mashing potatoes”. All 25 sequences of the complex motion type ”stirring” are used
for recognition. The result of this experiment is a MUER of 37.91%. This is a good
performance compared to the performance of the baseline systems BS(C, ci,t) built
by using manually segmented data (see figure 4.6).

The results of all experiments in this section imply that the model transfer technique
cannot be applied reasonably on data set B and C. The technique did not perform
well even though the multi-object and multi-position mapping problems were elim-
inated. Transferring models of similar motion units within the same data set (data
set C) led to appropriate results. These facts leads to the conclusion that the mo-
tion units in data sets B and C are too different. This might be a consequence of
the modeling abstraction level of motion units applied in this work. As mentioned
before, in ASR the model transfer technique is applied for transferring phoneme
models. The modeling abstraction level of phonemes is lower than the modeling
abstraction level of motion units applied in this work. Motion units applied in this
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Target Motion Unit Source Motion Unit

Rest position Rest position
Stir Mash
Put bowl back on position x Put bowl back on position x
Put spoon back on position x Put masher back on position x
Take bowl from position x Take bowl from position x
Take spoon from position x Take masher from position x

Table 6.3: The mapping of motion units of ”mashing potatoes” to motion units of
”stirring” in data set C. Position x can be one of the 5 permitted positions in data
set C.

work are comparable to words in speech recognition since they contain more specific
information and they can surely be modeled at a lower abstraction level.

The application of adaptation after the model transfer (from data set B to data set
C) using transcriptions for motion sequences in data set C improved the recognition
system quite reasonably. However, using the same amount of adaptation data in
conjunction with a little amount of manually segmented data (5 motion sequences
of each complex motion type) for initialization leads to a better performance.
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7. Conclusion and Future Work

7.1 Summary and Conclusions

In this thesis two automatic segmentation methods for human motion data and
the model transfer technique were investigated in order to enable the development
of a robust human motion recognition system, and at the same time reduce or
rather overcome the great effort associated with the manual segmentation task. The
evaluation was carried out by applying three motion data sets A, B, and C acquired
by the Collaborative Research Center 588 - Humanoid Robots. The data sets consist
of motions as they appear in kitchen tasks and food preparation scenarios.

The first experiments were conducted to develop baseline systems initialized and
trained by using different amounts of manually segmented data. The baseline sys-
tems served two purposes: firstly, the performance of the baseline systems was
considered as a baseline for the performance of other developed systems; secondly,
the baseline systems were utilized for the HMM-based segmentation approach.

Furthermore, other experiments were carried out in order to investigate the per-
formance of recognition systems trained by using more manually transcribed data
than manually segmented data for initialization. The experiments showed that the
amount of transcribed training data is more significant for the performance of the
recognition system than the amount of initialization data. This is a great advantage
since transcriptions used in the training task can be prepared with a much lower
effort than segmentations.

A supervised HMM-based segmentation method was evaluated by using data sets
A and B. For both data sets the evaluation was conducted in several experimental
sessions. In each session an HMM baseline system was initialized and trained with a
different amount of manually segmented data. The baseline systems were utilized for
segmentation. The HMM-based segmentation method was applied in three different
configurations.

In order to improve the quality of the automatically obtained segmentation the
application of confidence-based filtering was investigated. For this, two confidence
measures, namely the gamma probability and the a-stability, were evaluated. In this
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work, however, the evaluation showed that a stable correlation between confidence
values and actual recognition results does not exist and that the system is too
confident even if a little amount of training data is applied. This led to the decision to
discard the confidence-based segmentation filtering and to apply the entire obtained
segmentations for developing the recognition systems.

The application of the HMM-based segmentation on data set A did not lead to
performance improvements of developed recognition systems compared to the per-
formance of the baseline systems. This is due to fact that the HMM of the artificially
added motion unit ”rest position” in data set A was corrupted by applying unclean
automatically obtained segmentation data for re-training. Thus, the recognition
system was only able to recognize about 50% of this motion unit. However, F-score
values of many other motion units in data set A increased after applying a re-training
using additional HMM-segmented training data.

The application of the HMM-based segmentation in conjunction with data set B
led to successful performance improvements. In almost all experimental sessions
the developed recognition system outperformed the baseline system. An absolute
performance improvement up to 9.39% MUER was achieved. In this case the per-
formance of the baseline system BS(B, 6) (32.81% MUER) was improved to 23.42%
MUER by using 12 additional automatically segmented motion sequences of each
complex motion type (RShmm,I(B, 6, 12, 3)).

A successful application of the HMM-based segmentation method as presented in this
work is dependent on the data set. Applying an appropriate segmentation filtering
method will surely lead to better improvements and results. The best improvements
were achieved by applying a re-training using the transcriptions provided by the
segmentation method. The HMM-based segmentation method can be applied as
a semi-automatic segmentation and transcription method combined with manual
correction.

A PCA-based segmentation method was introduced and evaluated by using data
sets A and B. The segmentation method was carried out in two main steps. In
the first step motion unit boundaries were detected by finding minima and maxima
in the trajectory of the segmentation feature derived by using the first component
provided by the PCA. In the second step the detected segments were clustered and
labeled by applying the k-means clustering algorithm.

The evaluation of the PCA-based segmentation method in conjunction with data
set A led to MUERs up to 25.52%. The evaluation in conjunction with data set B
led to performance results up to 30% MUER. The classification of complex motion
types based on motion unit distributions led to a classification error rate of 9.6%
for data set A and 12% for data set B. In addition, the PCA-segmentations were
compared to the manual segmentations by applying a frame-wise comparison. The
comparison results were employed in order to determine matchings between auto-
matically obtained motion units and motion units in manual segmentations. Due to
the fact that no explicit one-to-one matching exists a double motion unit matching
algorithm was applied. The algorithm allows the matching of at most two motion
units in both directions. For data set A the matching algorithm was able to find
valid matchings for 75.6% of the automatically obtained motion units and 65.3%
of the motion units in the manual segmentation. For data set B the matching re-
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sulted in matching 86.4% of the automatically obtained and 91.7% of the manually
obtained motion units.

The PCA-based segmentation method led to reliable results in both motion unit
recognition and complex motion classification. Recognition systems trained with
PCA-segmented data outperformed the baseline systems trained with less than 10
manually segmented sequences of each complex motion type. These reasons make
it a serious alternative to other segmentation methods especially when no manually
segmented data exists and a recognition system for a limited number of motions has
to be developed rapidly. A drawback of the PCA segmentation is that the obtained
motion units do not have a semantic meaning as the motion units in the manual
segmentation. This problem could not be solved by applying explicit one-to-one
matchings between motion units in the automatic segmentation and motion units in
the manual segmentation. Instead, double motion unit matchings were applied. The
PCA segmentation method can be applied when the semantic meaning of motion
units is not important for the application. It can be reasonably applied for the
classification of complex motions.

The model transfer technique was applied on data sets B and C. HMMs of motion
units in data set B were transferred to a new recognition system for data set C.
The motion unit mapping was carried out in dependence to the object positions on
the counter top. Due to the characteristics of data sets B and C multi-object and
multi-position mappings had to be applied. All 65 motion units of data set C were
mapped. The result of the transferred recognition system is a MUER of 78.08%.
A combination of the model transfer technique and HMM segmentation led to an
improvement up to 72.03% MUER. Combining model transfer and transcription data
adaptation led to significant performance improvements up to 36.02% MUER. An
experiment including motion unit model transfer of only two complex motion types
in which no multi-object and multi-position mappings existed led to a performance
of 57.45% MUER. A further experiment including only motions from data set C was
carried out. In this experiment motion units of one complex motion in data set C
was mapped to motion units of another complex motion in data set C. The result
was a MUER of 37.91%.

The model transfer technique applied in this work did not perform well even though
the multi-object and multi-position mapping problems were eliminated. Transfer-
ring models of similar motion units within the same data set led to appropriate
results. Applying adaptation after the model transfer using transcription data im-
proves the recognition system quite reasonably. However, using the same amount of
adaptation data in conjunction with a little amount of manually segmented data (5
motion sequences of each complex motion type) for initialization leads to a better
performance. Thus, the application of the model transfer technique is only worth-
while if the initialization models using pre-segmented data is not possible, but still
a certain amount of transcription data is available.

The presented approaches in this work are compared to each other according to the
expected performance of the developed recognition systems and the effort required
for the development. The comparison can be seen in figure 7.1. The best perfor-
mance can be achieved by applying manually segmented data for initialization and
training. However, this option require the highest effort due to the manual seg-
mentation task. A more cost-efficient option is to use a little amount of manually
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Figure 7.1: An overview of the expected performance of recognition systems using
different development approaches and the effort required for the development. The
letters A and B next to the diamond markers refer to the data sets A and B.
The letters next to the triangle markers refer to the source and target recognition
systems. B → C∗ refers to the model transfer without multi-position and multi-
object mapping.

segmented data for the initialization task and use more manually transcribed data
for the training task. This way the effort can be lowered and at the same time the
performance is kept high. The lowest effort required to overcome the manual seg-
mentation task combined with a good performance can be achieved by applying the
automatic PCA segmentation method. In this case motion units without semantic
meaning has to be accepted or some effort has to spent in order to give them a
semantic meanig. The automatic HMM segmentation method provide motion units
with semantic meaning, but a a certain effort has to be spent for the preparation
of manually segmented data; depending on the data set, reliable recognition results
can be achieved. The pure model transfer technique require a relatively low effort
for the motion unit mapping task, but the performance is very low. Combining the
model transfer technique with adaptation leads to a performance improvement. For
this an additional effort has to be spent in order to prepare transcriptions of motion
sequences in the target data set.

7.2 Future Work

The most promising approaches investigated in this work are the HMM-based and
the PCA-based automatic segmentation methods.

The HMM-based automatic segmentation method could be exploited to build the
core of a semi-automatic segmentation and transcription framework. However, it
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must be ensured that the effort spent for correcting automatically generated seg-
mentations and transcriptions must not exceed the effort spent for generating new
manual segmentations and transcriptions. This could be achieved by applying a
graphical user interface (GUI). Generated segmentations and transcriptions can be
provided for operators in form of concatenated graphical elements that can be moved,
deleted, inserted, and resized. Operators may be able to choose one of the n best
alternative hypotheses provided by the system. Most likely motion units should be
provided in a drop-down list as insertion options.

Furthermore, the HMM-segmentation method could be improved in order to gen-
erate more accurate transcriptions. Instead of a flexible bi-gram statistical model
a more restrictive option could be applied in order to enforce certain motion unit
compositions. This can be achieved by applying a motion grammar.

A drawback of the PCA-based segmentation method is the lack of semantic meaning
of obtained motion units. However, systems based on such motion units can be
improved in order to allow the assignment of semantic meaning through interaction.
Motion units which require a semantic meaning (from the viewpoint of humans) can
be labeled using different kinds of human-machine interaction methods. One simple
possibility would be the integration of the PCA-based segmentation method into
a framework like mentioned above. System-generated labels could be replaced by
entering new meaningful labels. A more interesting scenario is to enable a robot
to learn the humane meaning of the most important automatically segmented and
composed motions through natural speech.
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