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Abstract. High-Level Features (HLF) are a novel way of describing and process-
ing human activities. Each feature captures an interpretable aspect of activities,
and a unique combination of HLFs defines an activity. In this article, we pro-
pose and evaluate a concise set of six HLFs on and across the CSL-SHARE and
UniMiB SHAR datasets, showing that HLFs can be successfully extracted with
machine learning methods and that in this HLF-space activities can be classified
across datasets as well as in imbalanced and few-shot learning settings. Further-
more, we illustrate how classification errors can be attributed to specific HLF
extractors. In person-independent 5-fold cross-validations, the proposed HLFs
are extracted from 68% up to 99% balanced accuracy, and activity classification
achieves 89.7% (CSL-SHARE) and 67.3% (UniMiB SHAR) accuracy. Imbal-
anced and few-shot learning results are promising, with the latter converging
quickly. In a person-dependent evaluation across both datasets, 78% accuracy is
achieved. These results demonstrate the possibilities and advantages of the pro-
posed high-level, extensible, and interpretable feature space.

Keywords: Human activity recognition · High-level features · Interpretable
machine learning · Wearable sensors

1 Background and Related Works

Human activity recognition (HAR), an important research topic for today’s modern life,
involves proven machine learning (ML) algorithms for related tasks, including biosig-
nal (pre-)processing, feature extraction and selection, unsupervised data segmentation,
and activity modeling approaches, as the classic and the state-of-the-art HAR research
pipelines portray [7,28,45]. A suitable algorithm and a high recognition rate are pre-
requisites for HAR applications to work smoothly [25]. Forefront research works in
non-traditional areas, such as device-free HAR [11], the effect of validation methods
on HAR performance [6], advanced sensing techniques applicable to HAR [5], and
interactive and interpretable online HAR [18], have been emerging.

In most research settings, the domain related to machine learning has received more
attention from researchers, focusing on solving the following two problems:

– Which ML approaches are more applicable for the study’s objectives, such as activ-
ity patterns, application scenarios, and datasets?
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– What topological and parametric adjustments should be made to the applied ML
approaches to obtain better results (accuracy)?

The first query was fully attended to, and field-related addressed. HAR has been
effectively studied on various well-established machine learning models such as Long
Short-Term Memory (LSTM) [38,53], Basic and Deep Neural Networks [23,37,50],
Convolutional Neural Networks [13,24,38,42,52,55], Recurrent Neural Networks
[2,9,21,36,38,44], and Hidden Markov Models (HMM) [29,33,40], among others.
More sophisticated modeling schemes based on mature ML models, such as Residual
Neural Networks [19,22,32,47] and Hierarchical Hidden Markov Models [54], have
also been applied to HAR. With the basic research of these ML models in the field of
HAR, the second problem mentioned above has also received favorable attention and is
usually solved based on model reformulation, parameter tuning, feature investigation,
and iterative optimization [1,2,16,30,41,48].

Noticeably, the vast majority of HAR studies listed above tend to be closely related
to, or even just about, ML models. In other words, researchers involved may not care
about or cannot effectively investigate the kinematic and physiological implications of
“activity” as a study object for human activity recognition. In these studies, “human
activity” is more of a signal set than a sport or kinesiological phenomenon. Similar
deficiencies have been better recognized and addressed in other fields of ML-based
pattern recognition. For instance, the mechanics of human voice production has been
extensively studied, leading to excellent automatic speech recognition models, such as
the three-state HMM-based Bakis-model [3] constructing phonemes by imitating pho-
netics in segmenting the pronunciation. Each sub-phoneme, represented as one state
(begin/middle/end), models a phoneme part, improving the model generalizability and
extendability for efficient training and decoding while reflecting the phonetic and bio-
logical significance. Moving from audio to video, the physiological model of the human
eye’s stereo vision has been commonly applied to image/video recognition [10,43].

Looking back at HAR, there is a paucity of literature linking human kinesiology,
somatology, physiology, or sportology to ML models. While these connections should
be feasible and pivotal, how they are studied requires crossing interdisciplinary divides.
A simple attempt in a statistical sense is to derive a reasonable duration based on big
data for every single motion in daily life and common sports, providing reference in
data segmentation, signal windowing, and modeling [31]. The recently proposed motion
units [27] approach is another step forward in bridging the gap from movement science
to machine learning, which partitions each human activity into a sequence of shared,
meaningful, and activity distinguishing states, analog to phonemes in speech recogni-
tion, endowing HAR modeling with operability, interpretability, generalizability, and
expandability.

As an exhaustive follow-up to our earlier conference publication [15], this article
elaborates on our novel method for practical knowledge incorporation from other fields
into HAR, facilitating non-ML experts for developing recognition systems. We propose
a feasible approach to allow researchers to design high-level activity properties with
their respective possible values, such as Backwards/Neutral/Forwards. Such a set of
features, extracted with classifiers, can be optimized or transformed into feature func-
tions in further stages, e.g., with the help of ML experts. A necessary condition for the
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proposed setup to work well is that each activity is divergent from all other activities on
at least one property, which enables the classification to be performed effectively with
an easily attributable featuring error discovery and a well interpretable feature space.

The following article includes a further in-depth elaboration of the High-level Fea-
tures, Error Attribution, and reiterated High-level Features compared to [18]. Further-
more, all experiments have been re-run, and new few-shot experiments were added. All
experiments are run on the CSL-SHARE [26], and UniMiB SHAR [35] datasets. These
datasets deploy different sensor carriers (knee-bandage and smartphone), sensors and
sensor positions (EMG, goniometer, accelerometer, and gyroscope around the knee and
accelerometer in different trouser pockets), and mostly different activities with a few
shared ones (“jump”, “walk”, “going up stairs”, among others). These properties make
the two datasets a perfect fit to demonstrate the utility of High-level Features for Human
Activity Recognition.

2 High-Level Features

In this work, we propose a set of High-Level Features along with how to extract and
utilize them in multiple tasks like classification, few-shot learning, and dataset combi-
nation.

2.1 Concept

High-Level Features describe properties of human activities independent of the sensor
setup used to record them in a human interpretable way. For instance, one HLF entitled
Back/Frontmight encode if a person is moving along the frontal direction, e.g., forward,
no-movement, or backward. This feature value is assigned based on activity initially,
and the association from sensor data to feature value is learned using classification
algorithms (see Sect. 3). Therefore, the activity “Walk” will be assigned the Back/Front
value of Forward, while “Walk Back” will be assigned Backward, and “Walk sideways”
is Neutral in the frontal direction.

The feature development is based on the activity target and activity knowledge
rather than the sensor data. Therefore, in some sensor setups, they might be impossible
to extract. For instance, a sensor setup based on a single IMU can likely not extract the
muscle force produced during jumps or bench presses, as the force is dependent not
only on the acceleration with which it is moved but also the weight stemmed. Never-
theless, the muscles produce this force during both activities and should be modeled
accordingly.

We propose developing these descriptive HLFs such that each activity has a unique
combination of feature values. Uniqueness has multiple benefits: activity classifica-
tion and zero-shot learning are straightforward. Furthermore, this leads to unambiguous
activity definitions. Uniqueness means that the one-hot encoded feature value vectors
can be looked up in a table for classification. At the same time, uniqueness implies
that two activities with identical features must be identical, or another property must
distinguish them. Vice versa, a unique combination of feature values implies a specific
activity. Both are tremendously helpful for developing HLFs: the first allows thinking
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about differences between activity pairs, and the latter allows checking how well the
features can scale. If most combinations are impossible, it might make sense to re-think
the features.

We propose treating the feature extraction as a classification task, thereby learning
the relationship between data and defined feature values in a data-driven fashion. One
could either use a single classifier to predict all feature values utilizing the possible
interdependence between features or treat them as independent by training a different
classifier per HLF. Both can be achieved with any machine learning classifier, with
different benefits. Here we focus on the latter due to its extensibility and flexibility of
adding or removing features by excluding or training classifiers, as well as the ability
to attribute errors made during classification to a specific feature extractor.

Feature extraction is sensor and dataset-dependent due to the classification
procedure. However, classification in the extracted high-level feature space is
sensor-independent due to its knowledge-driven and activity-based design. This inde-
pendence has multiple advantages: (1) the feature design is not limited to a specific
dataset, which results in scalable and meaningful features, (2) in this feature space, we
can combine multiple datasets for comparison, classification, and modeling, and (3) the
feature extraction itself can be adjusted to each datasets specifics, like sampling-rates,
missing values, or sensors.

2.2 Proposed High-Level Features

We proposed the HLF concept along with eight specific features in our previous work
[18]. Here, we further developed this into a more concise HLF-set utilizing the previ-
ously mentioned error propagation (see Sect. 5). We developed six High-Level Features:
Back/Front, Left/Right, Up/Down, Force, Knee, and Impact.

Back/Front. describes if the person moved along the sagittal plane. For instance,
because they walk forward or sit in a moving car. It can hold three different values:
Back, Neutral, and Forward. Note that Neutral does not imply the person is sitting still.
They could be moving to either side or up and down, just not forward or backward.

Left/Right. similarly describes movement along the frontal plane. However, it can take
multiple values, describing the subtlety of the movement: Left-extreme (large left move-
ment in short time), Left, Left-slightly (subtle left movement in long time), Neutral,
Right-slightly, Right, Right-extreme, and Any (indicating there is movement, but not
clearly defined). As discussed previously, these are required to distinguish left/right
shuffles from left/right curves and slight curves.

Up/Down. describes movement along the transverse plane. It can take the values Down,
Neutral, Up, and Updown. The latter is required to describe jumps, during which the
body initially goes up and sinks back down again. Currently, the HLFs are extracted as
one value for the whole segmented activity and, therefore, a trade-off in modeling is
required for jumps. One solution would be to aim for Up/Down to model the starting
movement of an activity, in which case jump would be assignedUp. The same argument
goes for the ending of a movement. Neither truly captures the movement of the jump
activity, which is why we opted to use the special case UpDown for now. The best
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solution would be to model HLFs in sequences which values may change over time.
We discuss this further in Sect. 8.

Force. describes the force the upper (right) leg muscles need to generate during this
activity. It can take the values N.a./None (no notable usage of the muscles), Low,
Medium, and High. This HLF is primarily required to distinguish jumping with one
and jumping with two legs but also supports distinguishing multiple other activities.

Knee. describes the movement or posture of the knees during the activity and is mainly
required to distinguish the only two static activities in the two used datasets: stand and
sit. It can take the values Bent or Straight (for postures) as well as Move and Falter
(for movements). Additionally, it can take the values Left knee first and Right knee first,
which brings the total different values for the Knee HLF up to six. The latter two are
technically a special case of the Move value and are currently required due to activity
distinctions in the CSL-SHARE dataset.

Impact. describes the amount or quality of impacts broadly. For falls, it takes the value
One, as in one larger impact when hitting the ground. Special cases are if the person is
hitting something during the fall but still hitting the ground (UniMiB SHAR: “Hittin-
gObstacle”), in which case it can take the value Two. Similarly, the person falling might
soften the fall by extending their arms, for which the value Softened is chosen. Dur-
ing static activities, the feature may take the value N.a./None, and during gait-related
activities Several. Therefore, resulting in five different values for Impact.

2.3 HLF Assignments

The full HLF assignment table across both datasets is depicted in Fig. 1. Each column
displays an activity’s unique feature value combination, while each row displays the
feature values across all activities. For easier readability, the table is color coded. Note
that the color is only consistent in each row. Back in Back/Front is coded dark blue for
all Backs in this feature, while dark blue for Up/Down is used for all Ups.

Figure 1 shows that each activity in this feature space is uniquely coded and that
multiple clusters of activities exist with similar feature values. For instance, the gait-
related activities share most features except Left/Right and Knee.

Plotting the distance between activities in this new feature space reveals these clus-
ters further. Figure 2 shows the distance between each pair of activities, with red regions
indicating low distance and blue regions high distance. The distance is measured as the
number of feature values in which a pair of activities differ, which correlates to the
euclidean distance of the one-hot encoded feature values per activity.

The main clusters emerge for falls and gait-based activities. Furthermore, it can
be observed that the V-Cut and Spin activities create their own clusters as well as share
most of their features with each other. More interesting is that the falls are less dissimilar
to the more static activities like sitting, standing, or sitting down than the gait and sports-
related activities. Intuitively this makes sense, as falls are no active activities and thus
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Fig. 1. HLFs per activity. The color is coded per feature values per row, with no intentional mean-
ing of color between rows.

do not require muscle force and are always Neutral in either Back/Front or Left/Right,
while the gait-based activities will seldom be Neutral in the Back/Front HLF. One could
roughly group activities based on these HLFs into three categories: fall, gait-based,
and lounge. Note that these observations span two separate datasets because the HLFs
design is based on the activities rather than the sensor data of these two datasets.
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Fig. 2.Distance between activities within the HLF-space. Measured as the number of distinguish-
ing feature values.

3 Feature Extraction

Correct extraction of the High-Level Features from given sensor data is crucial for any
further task, including classification and analysis. We treat feature extraction as a clas-
sification task for each feature separately. Therefore, the machine learning task is to
learn the relationship between the sensory data of an activity to its assigned categorical
feature value for each HLF. As discussed in Sect. 2, one could also utilize a single larger
extractor. However, we opted for the extensibility, explainability, and the possibility of
attributing classification errors to specific feature extractors instead of the single large
one when utilizing multiple independent feature extractors.
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HMM / BRF

CSL: 50-200ms
UniMiB: 400-800ms

Mean, RMS, Slope,
Max

Z-Normalization

CSL-SHARE /
UniMiB SHAR

Front: 8.4%
Neutral: 78.3%
Back: 13.3%

UniMiB only

Window Length Low-Level Features Rotation Removal

Fig. 3. HLF Extractor pipeline with preprocessing and classification stages.

Figure 3 depicts the HLF extractors. The initial sequence is windowed, four features
are extracted (Mean, RMS, Slope, Max), and the whole sequence is normalized. In the
case of the UniMiB SHAR dataset, a simple rotation removal is employed to mitigate
the different phone positions, as described in [17]. Lastly, two classifiers are tested: a
Hidden Markov Model and a Balanced Random Forest (BRF) [8]. The former fully
supports sequences, and the latter is trained on a fixed vector length of the first 50
low-level features. On the UniMiB SHAR dataset, this entails the full sequence (as all
sequences are 3 s long), and on the CSL-SHARE, this translates to the first half second.

Our previous work deployed out-of-the-box Random Forests, BRFs, and HMMs
with only slight parameter tuning for each HLF [15]. Very similar, we evaluated HMMs
and BRFs here, tuning both slightly to treat them as mostly out-of-the-box. The BRF
is chosen here as with the proposed HLF assignment each HLF has one or two dom-
inant and multiple less-represented values due to the datasets’ activities, and humans
preferring to walk forward instead of backward, as seen in Fig. 4.

Fig. 4. Number of samples for each feature value across datasets. The color indicates the values’
corresponding HLF.
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The Balanced Random Forests are tuned as to the window length and overlap for
each HLF. Tuning resulted in window lengths of 50ms (CSL-SHARE) and 800ms
(UniMiB SHAR), with 80% overlap to perform best. The HMMs are tuned for window
length and overlap, and two general-purpose topologies were tested. The first topology
plainly uses three states for each HLF target value. The second topology has a target-
specific second to fourth state and shares its initial and fifth state across all HLF values.
This design aims to allow the HMM to pick the most representative 3-phase subse-
quence for each HLF by allowing the first and last state to take arbitrary portions off of
the sequence, leaving the middle states to distinguish between targets. Parameter tun-
ing revealed 100ms and 200ms, depending on HLF (CSL-SHARE), 400ms (UniMiB
SHAR) window length and 80% overlap to work best. Both topologies performed well
and were mostly on par on the CSL-SHARE dataset. The plain three states outper-
formed the shared topology on the UniMiB SHAR consistently. This performance con-
trasts [17] and will be investigated further in future work.

Fig. 5. Summarized HLF extraction performance from 5-fold person-independent evaluation, list-
ing HMMs, BRFs, and chance level. Metric is the balanced accuracy.

For each of the six HLFs and each dataset, a 5-Fold person-independent cross-
validation was conducted. The balanced accuracy is used as a metric, as each HLF typ-
ically contains one dominant and multiple underrepresented feature values, as seen in
Fig. 4. All cross-validation results, including the chance level, are summarized in Fig. 5.
Both classifiers significantly outperform the chance level. The HMM consistently is bet-
ter than the BRF on the CSL-SHARE, while the opposite holds on the UniMiB SHAR
dataset. Performance on the CSL-SHARE dataset ranges from 92% (Left/Right) to 99%
(Impact) and ranges from 68% (Left/Right) to 94% (Force) balanced accuracy on the
UniMiB SHAR dataset. In both cases, each single feature extraction performance is
higher or close to state-of-the-art classification balanced accuracy. While very encour-
aging, note that error propagates, and the final classification performance is below state-
of-the-art.

4 Activity Classification

Activity Classification in this HLF space is straightforward. There are two main options:
utilizing the unique combination property to look up the activity based on the extracted
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features or training another classifier in this new space. The former is especially inter-
esting for zero-shot learning or error attribution (see Sect. 5), while the latter has the
potential to counter-balance difficulties in extracted HLFs.

Front:78.3%
Neutral: 8.4%
Back: 13.3%

Back/Front

BRF/Enc

One: 12.2%
Two: 20.5%
Several: 40.7%
...

Impact

Feature Extraction Activity Classification

... Walk 
Up Stairs

Fig. 6. Classifier stages with HLF extractors.

Figure 6 depicts the classification process. The HLFs are extracted as described in
Sect. 3 and are configured to return the probability for each possible HLF value, e.g.,
the Back/Front extractor will return how likely the Front/Neutral/Back values are given
a sensor data sequence. We found the extra information of the classifier confidences
benefited the final classification, but of course, a one-hot encoding from the extractors
would also be possible. All HLF probabilities are then stacked into a single feature
vector given to the classifier.

The encoding classifier calculates the euclidean distance between the given vector
and each activity, represented as stacked one-hot encoding of the assigned HLFs, and
picks the closest one. This approach allows zero-shot activity prediction. Given the
extracted features and definition of unseen activities, the classifier can predict them.
Furthermore, with the encoding classifier, classification errors can be attributed to the
different features. If walking was predicted to be walking a curve left, the reason for the
misclassification must be the Left/Right HLF.

The BRF classifier is simply trained to learn the relation between the stacked prob-
abilities and the activity label. The BRF may learn to counter-balance the difficulties
from the extractors by associating and counteracting low confidences of HLF extrac-
tions.

Activity classification in this high-level feature space is evaluated in a 5-fold person-
independent evaluation using the accuracy and balanced accuracy as metrics. The HLF
Extractors are configured with the previously found hyperparameters (see Sect. 3) but
are retrained inside the 5-fold cross-validation. Retraining is important to ensure the
high-level extractors have not been trained on test samples, thus overestimating the
final classification performance. Both a BRF-based and an encoding-based classifier
are evaluated.

The final classification performance with the BRF-based classifier is 89.7% (CSL-
SHARE) and 67.3% accuracy (UniMiB SHAR). These accuracies trail the previously
reported 93.7% (CSL-SHARE) and 77.0% accuracy (UniMiB SHAR) in a leave-one-
person-out cross-validation [17]. While 5-fold person-independent cross-validation can
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underestimate the performance due to a limitation in available training data compared to
a leave-one-person-out validation, the results from Sect. 6 indicate that the errors are not
made because of too little data. [17] employed (low-level) feature space transformations
using a combination of HMMs and an LDA, which should be evaluated with the high-
level feature extraction in future work.

The final classification performance with the Encoding-based classifier is 88.1%
(CSL-SHARE) and 66.4% accuracy (UniMiB SHAR). These are slightly lower than
with the BRF classifier. However, the following analysis mainly focuses on the
encoding-based classifier as the interpretation and the relation between final classifi-
cation and HLFs are solely based on to the HLF extraction.

Fig. 7. Blended confusion and distance matrix for the Encoding-based classifier on the CSL-
SHARE dataset. The color indicates distance, and values indicate the percentage of cases. (Color
figure online)

Figure 7 shows the confusion matrix for the CSL-SHARE dataset blended with the
distance matrix shown previously. The color indicates feature distance, and the number
indicates the percentage of cases. The main error is that walking in a straight line is often
predicted to be walking 90◦ left/right in three steps. The other cluster of errors happens
within the spin activities as well as between the spins and their v-cut counterparts.
Notably, almost all errors occur between low to medium-distance activities (colored
red).

Figure 8 shows the blended matrix for the UniMiB SHAR dataset. Similar to CSL-
SHARE, most errors occur between low-distance activities. There are three main clus-
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ters of errors: between types of falls, between walking and walking the stairs, and then
between in the distinction between sitting and lying. The confusion within the falls on
this dataset has been reported previously [17]. Interestingly at no time falling forward
is correctly predicted; instead, falling left/right and syncope seem to sink most falls.
The last cluster is especially interesting as sitting down is mainly misclassified as lying
down from sitting, and standing up is mostly confused with standing up from lying, but
standing up (from lying) is misclassified as lying down from sitting.

5 Error Attribution

Activity classification is never perfect, and one interesting question is why a misclassi-
fication was made. In the High-Level Feature space with unique feature combinations
for activities, the classification error can be attributed to the underlying feature extrac-
tion by determining the different HLFs distinguishing the actual and predicted activity.
For example, if walking is classified as walking left, this error can be attributed to the
Left/Right and Knee HLF, as these are the distinguishing HLFs between the two activ-
ities. Encoding-based classifiers render this straightforward, as the distance from the
extracted HLF to the definition of walk and between the extracted HLF to walking left
is the same in all but the distinguishing HLFs. Therefore, this misclassification occurs
due to the erroneous extraction in at least one of these HLFs. The following error attri-
bution analysis is based on the encoding-based classification experiment from Sect. 4.

Fig. 8. Blended confusion and distance matrix for the Encoding-based classifier on the UniMiB
SHAR dataset. The color indicates distance, and values indicate the percentage of cases.
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Figure 9 shows the number of times a distinguishing feature was wrongly extracted
during the experiment on CSL-SHARE. Distinguishing here means that this HLF value
differs between the true and the predicted activity. Wrongly extracted features that are
not part of the distinguishing set between the two confused activities are ignored as they
did not influence the classification. The color and upper number indicate the number of
times the HLF was wrongly extracted divided by the total number of these activities,
while the number in brackets divides by the number of errors. That is to say, the former
indicates the impact on the global accuracy while the latter indicates how many errors
this HLF is partial in. Take jumping with one leg: 41% of its instances are classified as
something else due to the Back/Front feature not being Forward. Back/Front is wrongly
extracted in 95% of the cases where jumping with one leg was confused.

The two main errors on the CSL-SHARE dataset are the Left/Right and Knee
HLF extractions causing walking to be misclassified in almost all instances, as well as
Back/Front (in combination with Force), causing jumping with one leg to be confused
with jumping with two legs.

Fig. 9. Errors in activity distinguishing HLF extractors on the CSL-SHARE dataset. Color and
upper value indicate the percentage of cases of all true activities. Value in brackets indicates the
percentage of cases of all misclassified activities.

The walking activity is most often confused with walking in a slight curve (see
Fig. 9). Figure 10 shows that in 93% of all actual walking activities, the Left/Right fea-
ture was incorrectly extracted and that in 100% of misclassified walks the Left/Right
feature was incorrect. Indicating that these two features are tough to extract for this
activity, which implies that either the HLF assignment needs to be reconsidered, further
sensory data included, or further development of the extractor is necessary. This partic-
ular difficulty has occurred within other works [17] as well, but on a much smaller scale,
meaning that clearer sensor data is likely helpful, but more importantly, the extraction
and HLF assignment need to be further investigated. The confusion around jump with
one leg mainly stems from the Back/Front feature, but Force also plays a role. Possibly
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because jumping with one leg is moving forward, but not the same way as walking is
and thus is not far away from Neutral either, which includes jumping in place which as
an activity is not far away from jumping with two legs.

Figure 10 shows the error causes on the UniMiB SHAR dataset. The leading error
is that the extracted Knee feature in sit down does not match the defined one. Looking
closer reveals multiple clusters: Left/Right is misclassified in most errors made on the
falls. As these are mostly descriptive on the HLF assignment, this likely is a problem in
the extraction being confused by the different device orientations present in the UniMiB
SHAR dataset. Similarly, Left/Right and Knee are very present in the activities in and
around standing and sitting. Lastly, Up/Down is causing problems in classifying walk-
ing down stairs, which makes sense as this is a walking-based activity and the only one
in the Down group along with all falls with vastly different sensor data making it hard
to find commonalities on how to extract these features.

6 Few-Shot Learning

Few-shot, zero-shot, and learning with imbalanced data are essential tasks in Human
Activity Recognition, as many activities cannot be extensively recorded. A typical
example is falling for which little or mostly simulated data exist. Nevertheless, falls
are crucial to be recognized accurately. The proposed HLF extraction and classifica-
tion have a significant advantage here, as data is shared across activities via the HLFs
grouping.

Fig. 10. Errors in activity distinguishing HLF extractors on the UniMiB SHAR dataset. Color and
upper value indicate the percentage of cases of all true activities. Value in brackets indicates the
percentage of cases of all misclassified activities.
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6.1 Imbalanced Learning

Simulated imbalanced data experiments are adapted from our previous work and re-run
in this new feature space and hyperparameters [15]. For each activity, the classifier is
evaluated as in Sect. 4, except that from that activity, only a subset of randomly chosen
samples is kept simulating a highly imbalanced dataset. Four metrics are recorded: the
overall accuracy per fold and three low-resource activity-specific metrics. Namely, the
f1 score of that activity only, the percentage of correctly extracted one-hot HLF vectors,
and lastly the mean errors in HLF extraction.

The results for the imbalanced experiments are depicted in Fig. 11 and are consis-
tently a few percentage points higher than previously reported [15]. Accordingly, while
very promising further improvement in the HLF extraction across sensor data from dif-
ferent activities is required.

Fig. 11. Imbalanced performance on CSL-SHARE and UniMiB SHAR datasets. Averaged across
5-fold person-independent cross-validation and rotating low-resourced activity.

6.2 Few-Shot Learning

Few-Shot learning experiments investigate how little data is required to achieve good
performance and if fewer than the recorded data might suffice. Similar to the imbal-
anced experiment, the proposed method has an advantage due to data sharing. The
Back/Fronts value Neutral is associated with multiple activities sensor data.

A 5-fold person-independent cross-validation is run. Similar to the imbalanced case,
the training data is subsampled. Here n ∈ {1, 10, 20, 40, 80, 150, 300} sequences are
sampled from each activity. In the case of n = 1, the full feature extraction and final
classification are trained on 22 (CSL-SHARE) and 17 (UniMiB SHAR) samples and
evaluated on the full test split. For comparison: in the above classification experiments
(see Sect. 4), 310 (CSL-SHARE) and 550 (UniMiB SHAR) training samples existed
per activity per fold. Note that the UniMiB SHARE dataset is imbalanced, and some
activities might already be fully present in earlier stages.
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Fig. 12. Few-shot performance on CSL-SHARE and UniMiB SHAR datasets. Averaged across
5-fold person-independent cross-validation and for increasing numbers of sampled sequences.

Figure 12 shows the accuracy, balanced accuracy, the percentage of fully correct
extracted HLF values, and the mean HLF extraction errors for each evaluated sampled
subsets training-fold. The classifier on the CSL-SHARE dataset converges very quickly
after around 40 samples per activity, while the classifier on the UniMiB SHAR dataset
converges steadily after 40 samples per activity. Note that the percentage of fully cor-
rect extracted features in this experiment is calculated over all activities, while in the
imbalanced experiments above, it is calculated over the activity in question alone.

The difference is stark: while in the imbalanced experiment, the median of fully
extracted feature values was at a maximum of 35% (CSL-SHARE, 40 samples), in the
few-shot experiment, it reached a mean of almost 80% after 40 samples while having
a much lower standard deviation. Therefore, indicating a problem in feature extraction
for these highly imbalanced cases. These results are encouraging for good classification
performance on small datasets.

7 Dataset Combination

Sensor choices along with feature choices in HAR typically follow the specific activ-
ities that should be discriminated. Even comparing the same activity like “walking”
across datasets is impossible as soon as different sensors or sensor positions were cho-
sen. However, comparing activities across sensor setups is of high interest and sup-
ports understanding the activities as well as their modeling. The following experiment
focuses on classification in this high-level feature space, comparison and design are
discussed in Sect. 2, and further experiments are planned for future work.

The HLFs are by design sensor independent, allowing to combine multiple datasets
in this space and, thus, enabling comparison and classification of the different activities.
The transformation into the HLF space is achieved by having two dataset-dependent
feature extractions with the same HLFs. The extracted and stacked vectors then have the
same dimension across datasets, meaning that the activity classification step is trained
on these vectors to predict the original dataset-specific activity labels. Not unlike an
interpretable equivalent to swapping the first layers of a Neural Network depending on
input while keeping the last layers fixed. The activity-level classification is, therefore,
independent of the dataset, which means that now “V-Cuts” (CSL-SHARE) need to
be distinguished from “Falls” (UniMiB SHAR). At the same time, both datasets have
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shared activities like “Walk” resulting in more samples compared to each individual
dataset.

The following experiment combines the CSL-SHARE and UniMiB SHAR datasets
in a classification experiment. It is not easy to ensure the occurrence of an activity that
only exists in one dataset to be in both the training and test set but from different people
in a person-independent evaluation across datasets. The main problem is an activity
only occurring in the test set as is the case in zero-shot learning. Therefore, a 10-fold
person-dependent stratified evaluation scheme is deployed.

The resulting 78% accuracy with both the Encoding and BRF-based HLF classifier
is in the middle between the 88% on the CSL-SHARE and the 67% on the UniMiB
SHAR dataset (see Sect. 4). This result is noteworthy with the scheme being person-
dependent instead of person-independent.

The blended confusion matrix for the encoding-based classifier is shown in Fig. 13.
The only difference for the activities occurring in only one dataset (like “FallingBack”
or “Walk 90◦ left”) is the person-dependent evaluation and, therefore, feature extrac-
tion. Accordingly, it is reasonable to attribute the better performance of falling for-
ward/left/right, and walking 90◦ left/right to the evaluation scheme. Data of a person

Fig. 13.Blended confusion and distance matrix for the Encoding-based classifier on the combined
CSL-SHARE and UniMiB SHAR dataset. The color indicates distance, and values indicate the
percentage of cases.
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might be present in both train and test set, resulting in person-dependent subtleties to
be picked up and included in the HLF extraction. However, it is also noteworthy that
shuffle left/right, lying down from sitting, and syncope perform significantly worse.
This might be due to hyperparameter settings being optimized for independence but
requires further investigation. Nevertheless, some activities’ misclassifications remain.
Especially falling left/right and syncope remain sink states, and lying down from sitting
is often confused with standing up from lying. Future work should involve both opti-
mization and analysis of person-dependent HLF extraction and a person-independent
dataset combination evaluation. For instance, by pairing participants across datasets to
ensure activities in the test set are present in training prior.

This dataset combination demonstrates that combining datasets with this method
is possible, which creates a foundation to find commonalities and suited features for
activities across different settings.

8 Future Work

The results from the HLF extraction and the different classification experiments, on
each dataset separately, imbalanced and few-shot, as well as on both datasets combined,
are very encouraging and show the feasibility and possibilities with these HLFs and
within this feature space. Multiple points should be addressed to improve these results,
catch up to state-of-the-art performances and develop the HLF space further.

The proposed HLF feature space has more than eleven thousand unique combina-
tions. Not all of those have to be possible, but investigating this further and naming
more of them will further enhance the understanding of activities and HLFs. High-level
features will be developed by borrowing from previous HAR work [27], sports knowl-
edge [34], and even utilizing findings and criteria from dance [12] from decades of
previous work. Additionally, extending the HLF to work on other datasets with differ-
ent activities should ensure more robust activity definitions as well as more versatile
HLFs.

Another major part for future work is developing these HLFs to return sequences
of probabilities rather than compressing a given sequence into a single vector. HLF
sequences would have multiple significant advantages, including online recognition and
removing the need for edge cases mentioned above. Take jumping, which currently in
the Up/Down HLF has the value Updown, and could then simply be first up and then
down. Not only a more sensible way of modeling but also more expressive and precise
over time. Similarly, the Knee HLF values used to indicate the starting foot would ben-
efit from more precise time information, as this could be transformed to model which
knee is in front as the more general case of the starting foot.

There are multiple challenges with extracting HLFs as sequences. The main chal-
lenges include learning the sensor data to HLF relationship, different sampling rates
across datasets, and reconsidering the uniqueness property and categorical values
requirement. Addressing the learning challenge, one approach could be to change the
ground truth labeling from being a single value per sequence to a sequence itself. How-
ever, this labeling is a lot more time-consuming, and in cases of data recordings without
videos might not even be possible. Another approach could be to develop a classifier
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that implicitly learns the sequence to value relationship. LSTM hidden states come to
mind, but it might be hard to ensure interpretability, otherwise, the need for HLF def-
initions is void. The different sampling rates mainly play a role in comparison across
datasets and could be addressed by re-sampling or interpolation. Classification with
sequence models is not affected as much, as models like HMMs do model order over
time and are not affected by different speeds of HLF changes. Furthermore, the slow
nature of HLFs might counteract the sampling rates. The uniqueness property might be
addressed by condensing the sequence HLFs by removing duplicates or directly cal-
culating the Levenshtein distance, as long as the HLFs remain categorical. Extracting
sequences of HLFs rather than vectors promises more expressive and precise activity
definitions, and its implications and modeling requirements will be further investigated.

The HLFs might benefit from supporting ordered or even numerical HLFs in addi-
tion to categorical ones. Take the Left/Right HLF, which has an ordering and intensity
(Extreme Left, Left, Slight Left), which a classifier might explicitly learn. Implicitly
this is likely already learned via the returned probabilities. If the classifier cannot surely
distinguish between Extreme Left and Left, both of these probabilities will be high, indi-
cating the true value to be somewhere in between. Nevertheless, explicitly modeling this
might further enhance the HLFs. In the same wake, it might make sense to reconsider
the N.a. and Any values present in multiple HLFs.

Further investigating the learned HLF extractors and how they arrive at their predic-
tions is another major point. One of the substantial advantages of the proposed HLFs
and their extraction mechanism is the fast and knowledge-based target assignment. The
main assumption is that extractors can utilize the extra information by extracting the
shared commonality across different activity labels. Some classifiers might be better at
this than others, and there is no restriction enforcing this currently. The classifiers might
subspace the sensor data by classifying the activity and grouping, say walk and walk
left. This does not change the usefulness of combing the datasets via the HLF space,
as knowledge engineering still provides multiple benefits. However, the benefit will be
greatly improved, especially in the few-shot and imbalanced classification experiments,
the more the classifiers can extract the specific attribute.

These and other topics, including estimating a performance ceiling with neural net-
works and extending to further datasets and modalities, are future work for these high-
level features.

9 Conclusion

High-Level Features (HLFs) are a novel way of describing human activities via unique
combinations of high-level human interpretable features. The nature of HLFs being
defined based on activities rather than sensor data makes the extracted features compa-
rable and combinable across datasets with different sensor setups.

In this article, we further elaborated and extended our initial HLFs and proposed
six HLFs, Back/Front, Left/Right, Up/Down, Force, Knee, and Impact. We then demon-
strated how to extract these with BRFs and HMMs and showed that classification in this
feature space works well in standard settings, as well as imbalanced, few-shot settings
and across datasets. The feature extraction worked very well with accuracies of at least
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92% (CSL-SHARE) and 68% accuracy (UniMiB SHAR) and up to 99% (CSL-SHARE)
and 94% accuracy (UniMiB SHAR) in a 5-fold person-independent cross-validation.
The classification experiments showed that classification in the HLF-space works very
well, with 89.7% (CSL-SHARE) and 67.3% (UniMiB SHAR) accuracy. Although cur-
rently behind state-of-the-art (93.7% CSL-SHARE, 77.0% UniMiB SHAR), the results
are promising and stand out due to the possibility of understanding why an error was
made and to attribute it to a combination of HLF extractors. The imbalanced and few-
shot learning experiments showed how sharing data between activities with multiple
HLF extractors supports learning with little or imbalanced data. In the case of imbal-
anced data, improvements can likely be made by further investigating the feature extrac-
tors and how they partition the low-level feature space in these cases. At the same time,
few-shot learning converged very quickly on the CSL-SHARE dataset and more slowly
on the UniMiB SHAR dataset, only requiring 10% (CSL-SHARE) of available data to
perform on par with the full data for training. Both experiments indicate that further
evaluation of preprocessing techniques and classifiers to only pay attention to the cor-
rect portions of the sensor data for this particular HLF should further enhance HLF
extraction. The experiment on dataset combination as well as the analysis of activity
distances in the HLF-space demonstrated the usefulness for cross-sensor-setup compar-
ison, classification, and HLF design.

The next steps are clear: extend to more datasets and reiterate the activities’ defi-
nition by adjusting and reconsidering the HLF value assignments. Furthermore, neural
networks and further low-level feature processing will need to be evaluated, and the
actual learnings of the HLF extractors will be investigated to improve the scalability of
these HLFs further. At the same time, we want to extend the HLFs to sequence model-
ing to enable more precise activity descriptions. All of this is to improve performance
and expressive power while not losing the option for non-ML experts to understand the
extracted high-level features.
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References

1. Amma, C., Gehrig, D., Schultz, T.: Airwriting recognition using wearable motion sensors.
In: First Augmented Human International Conference, p. 10. ACM (2010)

2. Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with
recurrent neural networks. Procedia Comput. Sci. 110, 86–93 (2017)

3. Bakis, R.: Continuous speech recognition via centisecond acoustic states. J. Acoust. Soc.
Am. 59(S1), S97–S97 (1976)

4. Barandas, M., et al.: TSFEL: time series feature extraction library. SoftwareX 11, 100456
(2020)

5. Bian, S., Liu, M., Zhou, B., Lukowicz, P.: The state-of-the-art sensing techniques in human
activity recognition: a survey. Sensors 22(12), 4596 (2022)

6. Bragança, H., Colonna, J.G., Oliveira, H.A.B.F., Souto, E.: How validation methodology
influences human activity recognition mobile systems. Sensors 22(6), 2360 (2022)



High-Level Features for Human Activity Recognition and Modeling 161

7. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-
worn inertial sensors. ACM Comput. Surv. (CSUR) 46(3), 1–33 (2014)

8. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data. Technical
report (2004)

9. Deng, Z., Vahdat, A., Hu, H., Mori, G.: Structure inference machines: Recurrent neural net-
works for analyzing relations in group activity recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4772–4781 (2016)

10. Dickinson, S.J., Leonardis, A., Schiele, B., Tarr, M.J.: Object Categorization: Computer and
Human Vision Perspectives. Cambridge University Press, Cambridge (2009)

11. Ding, X., Hu, C., Xie, W., Zhong, Y., Yang, J., Jiang, T.: Device-free multi-location human
activity recognition using deep complex network. Sensors 22(16), 6178 (2022)

12. Guest, A.H.: Labanotation: Or, Kinetography Laban : the System of Analyzing and
Recording Movement, no. 27. Taylor & Francis (1977). http://books.google.com/books?
id=Tq1YRDuJnvYC&pgis=1

13. Ha, S., Yun, J.M., Choi, S.: Multi-modal convolutional neural networks for activity recogni-
tion. In: SMC 2015 - IEEE International Conference on Systems, Man, and Cybernetics, pp.
3017–3022. IEEE (2015)

14. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362 (2020)
15. Hartmann, Y., Liu, H., Lahrberg, S., Schultz, T.: Interpretable high-level features for human

activity recognition. In: Proceedings of the 15th International Joint Conference on Biomed-
ical Engineering Systems and Technologies, pp. 40–49. SCITEPRESS - Science and Tech-
nology Publications (2022)

16. Hartmann, Y., Liu, H., Schultz, T.: Feature space reduction for multimodal human activ-
ity recognition. In: Proceedings of the 13th International Joint Conference on Biomedical
Engineering Systems and Technologies - Volume 4: BIOSIGNALS, pp. 135–140. INSTICC,
SciTePress (2020)

17. Hartmann, Y., Liu, H., Schultz, T.: Feature space reduction for human activity recognition
based on multi-channel biosignals. In: Proceedings of the 14th International Joint Conference
on Biomedical Engineering Systems and Technologies, pp. 215–222. INSTICC, SciTePress
(2021)

18. Hartmann, Y., Liu, H., Schultz, T.: Interactive and interpretable online human activity recog-
nition. In: 2022 IEEE International Conference on Pervasive Computing and Communica-
tions Workshops and Other Affiliated Events (PerComWorkshops), pp. 109–111. IEEE, Pisa
(2022)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR
2016 - IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

20. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007).
http://ieeexplore.ieee.org/document/4160265/

21. Inoue, M., Inoue, S., Nishida, T.: Deep recurrent neural network for mobile human activity
recognition with high throughput. Artif. Life Robot. 23(2), 173–185 (2018)

22. Keshavarzian, A., Sharifian, S., Seyedin, S.: Modified deep residual network architecture
deployed on serverless framework of IoT platform based on human activity recognition
application. Futur. Gener. Comput. Syst. 101, 14–28 (2019)

23. Kwon, Y., Kang, K., Bae, C.: Analysis and evaluation of smartphone-based human activity
recognition using a neural network approach. In: IJCNN 2015 - International Joint Confer-
ence on Neural Networks, pp. 1–5. IEEE (2015)

24. Lee, S.M., Yoon, S.M., Cho, H.: Human activity recognition from accelerometer data using
convolutional neural network. In: BIGCOMP 2017 - IEEE International Conference on Big
Data and Smart Computing, pp. 131–134. IEEE (2017)

25. Liu, H.: Biosignal processing and activity modeling for multimodal human activity recogni-
tion. Ph.D. thesis, University of Bremen (2021)

http://books.google.com/books?id=Tq1YRDuJnvYC&pgis=1
http://books.google.com/books?id=Tq1YRDuJnvYC&pgis=1
http://ieeexplore.ieee.org/document/4160265/


162 Y. Hartmann et al.

26. Liu, H., Hartmann, Y., Schultz, T.: CSL-SHARE: a multimodal wearable sensor-based
human activity dataset. Front. Comput. Sci. (2021)

27. Liu, H., Hartmann, Y., Schultz, T.: Motion units: generalized sequence modeling of human
activities for sensor-based activity recognition. In: EUSIPCO 2021–29th European Signal
Processing Conference. IEEE (2021)

28. Liu, H., Hartmann, Y., Schultz, T.: A practical wearable sensor-based human activity recogni-
tion research pipeline. In: Proceedings of the 15th International Joint Conference on Biomed-
ical Engineering Systems and Technologies - Volume 5: HEALTHINF, pp. 847–856 (2022)

29. Liu, H., Schultz, T.: ASK: a framework for data acquisition and activity recognition. In:
Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems
and Technologies - Volume 3: BIOSIGNALS, pp. 262–268. INSTICC, SciTePress (2018)

30. Liu, H., Schultz, T.: A wearable real-time human activity recognition system using biosen-
sors integrated into a knee bandage. In: Proceedings of the 12th International Joint Confer-
ence on Biomedical Engineering Systems and Technologies - Volume 1: BIODEVICES, pp.
47–55. INSTICC, SciTePress (2019)

31. Liu, H., Schultz, T.: How long are various types of daily activities? Statistical analysis of a
multimodal wearable sensor-based human activity dataset. In: Proceedings of the 15th Inter-
national Joint Conference on Biomedical Engineering Systems and Technologies - Volume
5: HEALTHINF, pp. 680–688 (2022)

32. Long, J., Sun, W., Yang, Z., Raymond, O.I.: Asymmetric residual neural network for accurate
human activity recognition. Information 10(6), 203 (2019)

33. Lukowicz, P., et al.: Recognizing workshop activity using body worn microphones and
accelerometers. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp.
18–32. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6 2

34. Meinel, K., Schnabel, G.: Bewegungslehre - Sportmotorik: Abriß einer Theorie der
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