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Abstract: We introduce a spatial artifact detection method for a surface electromyography (EMG) based speech recog-
nition system. The EMG signals are recorded using grid-shaped electrode arrays affixed to the speakers
face. Continuous speech recognition is performed on the basis of these signals. As the EMG data are high-
dimensional, Independent Component Analysis (ICA) can be applied to separate artifact components from the
content-bearing signal. The proposed artifact detection method classifies the ICA components by their spatial
shape, which is analyzed using the spectra of the spatial patterns of the independent components. Components
identified as artifacts can then be removed. Our artifact detection method reduces the word error rates (WER)
of the recognizer significantly. We observe a slight advantage in terms of WER over the temporal signal based
artifact detection method by (Wand et al., 2013a).

1 INTRODUCTION

Communication is the exchange of knowledge be-
tween people and thus may be considered a funda-
mental root of civilization. While there are many
ways to express thoughts and feelings, speech un-
doubtedly is the most expressive communication
method available. Furthermore, while speech evolved
as a means of face-to-face conversation among at
most a small group of persons, modern technological
enhancements, for example cell phones and speech-
based computer interfaces, have made it not only an
ubiquitous means of communication between humans
across the entire world, but also a method to control
technical devices.

This development has been a great progress, but
it also brought about problems since speech needs to
be clearly audible and cannot be shielded, resulting
in disturbance for bystanders, lack of privacy, and de-
terioration of communication in noisy environments.
Furthermore, speech-disabled persons are often ex-
cluded from using speech-based computer interfaces.
These challenges are tackled by Silent Speech Inter-
faces, which are systems enabling speech communi-
cation to take place without the necessity of emitting
an audible acoustic signal, or when an acoustic signal
is unavailable. In their survey article, (Denby et al.,
2010) provide an overview about the state of the art in
Silent Speech Interfaces, and the strengths and limita-

tions of different modalities (Electromyography, Ul-
trasound, Non-Audible Murmur, etc. ).

We report on a surface electromyography (EMG)
based Speech Recognition System, where electrical
activity of the articulatory muscles is captured by
EMG electrodes attached to the speaker’s face, and
the corresponding speech is decoded and output as
text. This method allows speech to be recognized
even when it is produced silently, i. e. mouthed with-
out any vocal effort, as demonstrated by (Jorgensen
et al., 2003). Most current approaches to EMG
based speech recognition use single electrodes for the
recording of facial electromyographic signals (Deng
et al., 2012), (Jorgensen and Dusan, 2010), (Freitas
et al., 2012). However our EMG acquisition system
uses electrode arrays, as used by (Wand et al., 2013b)
for continuous speech recognition and by (Kubo et al.,
2013) for vowel discrimination. While single elec-
trodes can be placed precisely to capture activity from
a specific muscle, they require manual setup and one
cable for every electrode. Electrode arrays capture
signals from a larger area of the speaker’s face than
single electrodes. This makes them less flexible re-
garding the positioning, but allows us to locate the
exact positions of muscle activities computationally
using array processing methods. (Wand et al., 2013b)
proposed to apply Independent Component Analysis
(ICA) (Hyvärinen and Oja, 2000) as a means to im-
prove the signal quality, and showed that the recog-



nition accuracy of the system can be improved by
extending the ICA method with an artifact removal
algorithm. ICA decomposes an N-dimensional sig-
nal into N statistically independent components. We
can interpret these components as theoretical source
signals, of which we only observe a linear superpo-
sition. The idea of artifact removal algorithms is to
take a set of ICA source components, and to heuristi-
cally separate signal from artifact components, while
keeping the signal removing the artifact components.
ICA has been used for some time to decompose EEG
signals (Jung et al., 2000), (Viola et al., 2009). Stud-
ies from medical EMG processing suggest that ICA is
also well applicable to EMG electrode arrays (Naka-
mura et al., 2004), (Ren et al., 2006). Yet to our
knowledge (Wand et al., 2013a) were the first to use
ICA to reduce artifacts in EMG electrode array based
speech recognition. This paper improves upon that
work, which used a temporal signal based approach
to artifact detection. We study a different kind of arti-
fact detection algorithm which does not consider the
computed signal components by themselves, but di-
rectly analyzes the ICA decomposition matrix. Our
approach uses spatial information, which is comple-
mentary to the temporal information used in the tem-
poral signal based method. We therefore expect it
to detect other types of artifacts - which suggests a
possible benefit from fusing these two detection ap-
proaches in future work. We show that our method
slightly outperforms, albeit not significantly, the tem-
poral signal based method in terms of speech recog-
nition accuracy.

2 DATA CORPUS

We use the same data corpus as (Wand et al., 2013b)
and (Wand et al., 2013a), therefore we follow these
authors in the description of the recording process and
the resulting corpus. For EMG recording the EMG-
USB2 multi-channel EMG amplifier was used, which
was produced and distributed by OT Bioelettronica,
Italy (www.otbioelettronica.it). The set of elec-
trode arrays was obtained from the same vendor. The
recording configuration for the experiments is shown
in figure 1. Two types of arrays were used: A chin
array with a row of 8 electrodes with 5 mm inter-
electrode distance (IED), and a cheek array with 4×8
electrodes with 10 mm IED. In order to minimize
common-mode artifacts, a bipolar measurement con-
figuration was chosen, where the potential difference
between two adjacent channels in a row was mea-
sured. This means that out of 4× 8 cheek electrodes
and 8 chin electrodes, (4+1) ·7 = 35 signal channels

Figure 1: Positioning of the EMG array during recording.
One 4× 8 array is affixed to the speaker’s cheek and one
1×8 array is affixed underneath the chin. Image taken from
(Wand et al., 2013b) with permission.

were obtained in total. The EMG signals were sam-
pled at 2048 Hz. The audio signal was recorded with
a standard close-talking microphone in parallel to the
EMG recordings. An analog marker system was used
to synchronize the EMG and audio recordings. The
EMG signal was delayed by 50 ms compared with the
audio signal, to adjust the anticipatory properties of
EMG signal (Cavanagh and Komi, 1979) (Jou et al.,
2006).

The recording protocol follows (Schultz and
Wand, 2010): We used 7 sessions recorded by 6
speakers, where each session consisted of 50 phonet-
ically balanced English sentences: a set of 10 base
sentences, which was kept fixed across sessions and
used for testing, and a set of 40 training sentences
which varied across sessions. The sentences belong
to the Broadcast News domain and were read in nor-
mal, audible speech. Note that the corpus also con-
tains larger sessions, as well as recordings of silently
mouthed speech, which were not used in this study.
All experiments were session-dependent, i. e. train-
ing and testing was performed separately for each ses-
sion. The 7 sessions have an average length of 191
seconds each, whereof 149 s are training and 42 s are
testing utterances.

3 BASELINE RECOGNITION
SYSTEM

3.1 Feature Extraction

Before any features are extracted, the data are pre-
processed by synchronizing the EMG with the audio
recordings, and by normalizing all 35 EMG channels
with respect to mean and variance. The normalization
step is necessary because of varying electrode resis-
tances at each channel.

If no Independent Component Analysis (ICA) is
applied, features are extracted from each of the chan-
nels. When ICA is applied, the ICA transformation



matrix is computed session-wise on the training data,
resulting in a set of ICA components. We use the Info-
max ICA algorithm according to (Bell and Sejnowski,
1995), as implemented in the Matlab EEGLAB tool-
box (Delorme and Makeig, 2004), to compute the
ICA decomposition. For a thorough introduction to
the theory of Independent Component Analysis, we
would like to refer the reader to (Cardoso, 1998) and
(Hyvärinen and Oja, 2000). For the subsequent ar-
tifact removal, (Wand et al., 2013a) introduced two
methods:
• The direct method means that artifact components

are removed, and features are extracted on the re-
maining ICA components.

• The back-projection method consists of taking
the ICA decomposition, setting detected artifact
channels to zero, and then applying the inverse of
the ICA transformation. This “back-projects” the
signal representation into its original domain, but
suppresses the detected noise. Features are then
extracted on the back-projected data.
We compare our results with two baseline sys-

tems: First, a baseline system without any ICA ap-
plication or artifact removal. Second, we perform the
ICA decomposition, but do not remove any compo-
nents. In all cases, features are extracted on each
channel or component separately. We use the time-
domain feature extraction proposed by (Jou et al.,
2006) and also used by (Wand et al., 2013a).

For any given frame f, f̄ is its frame-based time-
domain mean, Pf is its frame-based power, and zf is
its frame-based zero-crossing rate.

For an EMG signal with normalized mean x[n],
we obtain a low-pass filtered signal w[n] by using a
double nine-point moving average:

w[n] =
1
9

4

∑
k=−4

v[n+ k] (1)

where v[n] =
1
9

4

∑
k=−4

x[n+ k]. (2)

The complementary high-frequency signal is p[n] =
x[n]−w[n], and the rectified high-frequency signal is
r[n] = |p[n]|.

Let S(f,n) be the stacking of adjacent frames of
feature f in the size of 2n+ 1 (−n to n) frames. The
feature TDn, for one EMG channel or ICA compo-
nent, is now defined as follows:

TDn =S(TD0,n), (3)
where TD0 =[w̄,Pw,Pr,zp, r̄], (4)

i. e. a stacking of adjacent feature vectors with context
width 2 · n+ 1 is performed, with varying n. Finally,

the combination of all channel-wise feature vectors
yields the TDn feature vector. Frame size and frame
shift are set to 27 ms and 10 ms, respectively.

After this step, we apply Principal Component
Analysis (PCA) on the resulting extended feature vec-
tors, reducing their dimensionality to 700. This step
is followed by Linear Discriminant Analysis (LDA)
to obtain a final feature vector with 32 coefficients.
(Wand et al., 2013b) showed that the PCA step is
necessary in order to obtain robust results: For a
small amount of training data relative to the sam-
ple dimensionality, the LDA within-scatter matrix
becomes sparse (Qiao et al., 2009), which causes
the LDA computation to become inaccurate. 1 As
LDA is a supervised method, we need to assign
classes to every feature vector of the training set. An
acoustical speech recognizer is used to align a most
likely sequence of sub-phonemes to the simultane-
ously recorded audio sequence. As the audio and
EMG data are recorded simultaneously, these sub-
phonemes can be used as classes for the EMG training
data, between which LDA maximizes discriminabil-
ity. In total, 136 different classes are used.

3.2 Training and Decoding

We perform EMG-based continuous speech recogni-
tion. For this purpose, models of words or utterances
must be constructed from smaller units. While in con-
ventional acoustic speech recognition, these units are
normally context-dependent subphones (Lee, 1989),
we follow (Schultz and Wand, 2010) and use Bun-
dled Phonetic Features (BDPFs) as foundation for
our modeling. Phonetic Features represent proper-
ties of phones, like the place or manner of articula-
tion. Phonetic feature bundling means that dependen-
cies between these features are taken into account.
Each such BDPF model is represented by a mixture
of Gaussians. The knowledge from the different pho-
netic features is merged using a multi-stream model
(Metze and Waibel, 2002) (Jou et al., 2007).

Otherwise, our recognizer follows a standard pat-
tern. We use three-state left-to-right fully continuous
Hidden Markov Models (HMM), where the emission

1LDA essentially consists of a maximization problem
wT SBw
wT SW w , where SW is the within scatter matrix and SB is
the between scatter matrix. The optimization is performed
by means of an eigenvalue analysis. Numerical instability
arises when the denominator of the above fraction is singu-
lar, which happens if SW has zero eigenvalues. Note that for
the PCA computation, this is not a problem since for PCA,
one maximizes a single term wTCw (C is the sample covari-
ance matrix) instead of a fraction and all samples are used
for covariance estimation.



probabilities are modeled using multi-stream Bun-
dled Phonetic Features, as described above. Recog-
nizer training consists of generating models for non-
bundled phonetic features, running the phonetic fea-
ture bundling, and then retraining the models using
the newly generated BDPF structure. See (Schultz
and Wand, 2010) for a detailed description. For this
training, phone-based time alignments of the EMG
data are required. Since we record the acoustic speech
in parallel to the EMG data, these time-alignments
can be generated by forced-aligning the audio data
with a standard acoustic speech recognizer, according
to (Jou et al., 2006).

For decoding, we use the trained HMM together
with a trigram Broadcast News language model. The
test set perplexity is 24.24. We restrict our decoding
vocabulary to the 108 words that appear in the test
set. In this we follow (Wand et al., 2013a), where
the corpus which we use was first introduced. The
small vocabulary size is due to the limited amount of
training data, it has been shown for example in (Deng
et al., 2012) that much larger vocabularies can be used
if more training data is available.

3.3 Evaluation Metric

We evaluate our recognition systems using the Word
Error Rate (WER). The Word Error Rate indicates
which percentage of spoken words is recognized
wrongly, thus lower WER values indicate better
recognition performance. As a metric, it is widely
used in speech recognition. The Word Error Rate for
continuous speech recognition tasks is defined as fol-
lows. The speech recognition hypothesis and the cor-
rect reference sentence are compared by computing
the optimal alignment with respect to word-based edit
distance. Over all utterances in the test set, the num-
ber of word substitutions (#S), insertions (#I), and
deletions (#D) is counted, and divided by the total
number of words (#T) in the references.

WER =
#S+#I+#D

#T
. (5)

4 METHODS OF ARTIFACT
DETECTION

The goal of artifact detection algorithms is to de-
cide which ICA-components of the EMG signal rep-
resent speech-related muscle activities and which rep-
resent artifacts. We distinguish between temporal
signal based and spatial methods. In temporal sig-
nal based artifact detection, as introduced by (Wand

et al., 2013a), components are classified by the spec-
tral properties of the post-ICA signal. We introduce
spatial artifact detection as a new approach to artifact
detection for EMG arrays. Here, each independent
component is classified by the pattern of its spatial
filter, i. e. the distribution of source dimensions con-
tributing to the component. All components that are
detected as artifacts are removed before applying the
further preprocessing steps described in section 3.1.

4.1 Temporal Signal Based Artifact
Detection Heuristics

In their approach to temporal signal based artifact de-
tection, (Wand et al., 2013a) designed three classifica-
tion measures to recognize different kinds of artifact
signal components. All training utterances are trans-
formed separately using the ICA matrix. If at least
one of the three measures classifies a component as
an artifact on more than 50%2 of the training utter-
ances, this component is considered an artifact by the
temporal signal based heuristic. The authors use the
following per-utterance classification measures:
• Autocorrelation measure: This method typically

identifies regular artifacts, like power line noise.
The autocorrelation of the component signal is
computed and if the value of the first peak exceeds
a threshold of 0.5, this component is deemed an
artifact.

• High-frequency noise detection: The surface
EMG signal has a range of 0Hz - 500Hz (Zhao
and Xu, 2011). Therefore, components with dis-
tinct high-frequency parts are likely to be artifacts.
The signal is transformed into the frequency do-
main and split into a high and low frequency part
at 500Hz. If the ratio between high-frequency
signal energy and low frequency signal energy is
larger than a threshold of 0.75, the component is
considered an artifact.

• EMG signal range: The main energy of the EMG
signal is found between 50Hz and 150Hz. If the
energy of the 50-150Hz band is less than fourfold
the energy of the remaining frequency bands, a
component is deemed an artifact.

4.2 Artifact Detection Based on Spatial
Filters

We first introduce the term spatial pattern. A spa-
tial pattern (Blankertz et al., 2008) is a matrix of the

2(Wand et al., 2013a) found a consensus threshold of
50% as optimal for the direct method, and a threshold of
10% as optimal for back-projection setups.



Figure 2: Typical spatial patterns for artifact components
(left) and EMG signal components (right). Red pixels indi-
cate positive channel weights and blue pixels indicate neg-
ative channel weights.

same size as the electrode array that was used for the
recording. Each spatial pattern is a compact represen-
tation of a single independent component. It is ob-
tained by remapping the column of the inverse ICA
matrix A that corresponds to the independent com-
ponent. The spatial pattern visualizes in which elec-
trodes the hidden signal component will be present by
which amount. Note that each channel can contribute
with a positive or negative weight to each component.
Figure 2 shows exemplary spatial patterns for the 28-
channel signal measured from the cheek array, where
we manually labeled the ICA components as artifacts
or EMG-like. One can see six spatial patterns, corre-
sponding to six independent components. Each spa-
tial pattern has been computed by taking one row of
the inverted ICA matrix and reshaping it into the form
of the original EMG array. The spatial patterns on
the right hand side are three typical signal compo-
nents, each exhibiting a visible region of EMG activ-
ity, with only gradually changing intensity. The left-
hand side shows three typical artifact components: Ei-
ther the spatial pattern of that component appears ran-
dom (bottom left), or the pattern is dominated by only
a few single components (top/middle left). These are
often caused by single disconnected electrodes. Note
that this observation only applies to the spatial pattern
of the cheek array: On the chin array, we observed
no direct connection between artifact components and
their spatial patterns. We assume this is because the
chin array with its eight electrodes is too small to per-
form a meaningful analysis of spatial spectra.

Using spatial patterns to visualize and classify
independent components is a common technique in
EEG and BCI applications (Blankertz et al., 2008).
Viola et al. (Viola et al., 2009) proposed a semi-
automatic technique for clustering independent com-
ponents and identification in EEG, which is based on
comparing all independent components with a user-
provided template pattern, and scored them by com-
ponent similarity. We use a similar approach for clas-
sification of the EMG components, however we use
a weakened definition of component similarity, which

also takes position shifts of the components into ac-
count.

Given the assumption that useful muscle-activity
related EMG signals are usually recorded at a num-
ber of neighboring array electrodes, we expect that
good signals are likely to originate from a whole re-
gion of the electrode array. In contrast, many compo-
nents that correspond to signal artifacts, for instance a
broken channel that carries mains hum or other noise,
often originate from a single electrode of the array.

We apply this observation to design an artifact de-
tection algorithm that prefers smooth patterns con-
taining predominantly large regions over non-smooth
patterns with frequent or abrupt changes. These two
classes can be separated well by looking at the spec-
tral domain of the spatial patterns. We therefore in-
troduce the Spatial Spectral Correlation as a measure
for image similarity and show how it can be applied
to measure the existence of smooth regions in the dis-
tributions of independent components in EMG arrays.

4.3 Spatial Spectral Correlation as a
Measure for Image Similarity

Given two image matrices I1 and I2 of the size M×N,
we define the Spatial Spectral Correlation (SSC) as
the correlation between the two log-magnitude spec-
tra of the image matrices. Let

SSC(I1, I2) :=

〈 log |DFT2{I1}| , log |DFT2{I2}| 〉 (6)

where 〈·, ·〉 denotes the scalar product of two matrices

〈A,B〉=
M

∑
u=1

N

∑
v=1

Au,v ·Bu,v (7)

and DFT2{I} denotes the finite two-dimensional Dis-
crete Fourier Transform of an image matrix I ∈
RM×N :

DFT2{I}u,v =
N−1

∑
y=0

(
M−1

∑
x=0

Ix,y · e− j2π
ux
M ) · e− j2π

vy
N (8)

The SSC between two images is high if the images
have a similar magnitude spectrum, but low for im-
ages with diverging magnitude spectra. As this simi-
larity measure uses only the magnitude spectrum and
discards the phase information, a circular shift of the
image or any harmonic frequency does not change the
value of the SSC score, as all position information is
encoded in the phase spectrum. SSC therefore mea-
sures how well the frequency histograms of two im-
ages match.



Figure 3: The reference template for the spatial pattern of
an ideal, spatially distributed component with dominant low
frequencies. Red pixels indicate positive weights and blue
pixels indicate negative weights.

4.4 Using SSC to Select Artifact
Components

We can now use SSC to assign a score to the patterns
of the independent components. This score represents
the similarity between the magnitude spectrum of the
component’s spatial pattern and the magnitude spec-
trum template pattern. This template pattern can be
chosen to match the specific spatial patterns to look
for. For our heuristic, we chose a template pattern ad-
hoc to contain dominant low-frequency components
and only weak high-frequency components, similar
to those observed in the manually classified compo-
nents. Figure 3 shows this reference pattern.

We classify the independent components as sig-
nal or artifact components using two approaches and
compare these: The first is an absolute threshold for
the SSC scores, the second is choosing a fixed number
of high-scoring components (k-best approach). Note
that while we applied positive selection by choosing
components with high SSC to actual signal compo-
nents, one could also apply negative selection by dis-
carding components with high similarity to prototyp-
ical artifact components.

5 EXPERIMENTS AND RESULTS

We find that the base system without ICA has a Word
Error Rate (WER) of 46.3%. If we apply ICA with-
out removing any components, the WER is slightly
reduced to 45.3%. We refer to this configuration as
”with ICA”.

We compare the new spatial approach with the fol-
lowing reference systems: As the first reference, we
use ”with ICA”, the best baseline setup without arti-
fact removal at a WER of 45.3%. As the second ref-
erence, we use the results of the best temporal signal
based method by (Wand et al., 2013a), using the pa-
rameters found optimal in their study. This direct tem-
poral signal based approach yields a WER of 40.8%.

From manual inspection of the data we observed
that about one third of the 28 independent compo-

nents in the cheek array correspond to artifacts. We
chose the parameters for the spatial artifact detection
heuristic accordingly: We evaluated the k-best ap-
proach choosing the 16 and 20 best-scoring compo-
nents (from now on denoted as 16-best and 20-best).
For the absolute threshold approach, we evaluated
thresholds of -5 and -10 for the SSC score with the
template pattern. These thresholds classified 6.5 and
9.4 components as artifacts on average.

Note that we do not apply the spatial heuristics to
the small chin array: To ensure comparability with the
other setups, the artifact removal algorithm of (Wand
et al., 2013a) is applied to the 7 components of the
chin array. These setups were evaluated using the
recognition system described in section 3.2 on our
data corpus.

Figure 4 shows the WERs for the respective ar-
tifact reduction variants used during preprocessing.
Using direct spatial artifact detection and an absolute
SSC threshold of -5 yields a WER of 36.07%, which
is a 20.45% relative improvement compared with the
best setup without artifact removal. Compared with
the temporal signal based artifact removal method by
(Wand et al., 2013a), the WER is reduced by a relative
11.68%. Using the back-projection approach and an
SSC threshold of -10, the WER is 42.14%, which cor-
responds to a relative improvement of 7% compared
with the ”with ICA” setup. Note that the reported val-
ues of the word error rates probably overestimate the
actual improvement in WER, as the parameters for
the artifact detection method were chosen on the cor-
pus data used for evaluation. Therefore we expect a
slightly higher WER when the artifact detection is ap-
plied to yet unseen data.

All observed performance improvements were
tested for statistical significance using paired t-tests:
For all direct spatial methods, the improvement with
respect to the ”with ICA” baseline method is signif-
icant with a confidence level of > 99%. However,
when comparing the spatial with the temporal signal
based approach from (Wand et al., 2013a), the ob-
served improvement has a confidence of only 85.74%,
which is not significant. The difference between the
absolute threshold and the k-best methods for spatial
artifact detection is statistically not significant, even
though the threshold-based methods perform slightly
better.

6 DISCUSSION

Achieving a WER of 36.1%, the artifact reduction
pushes the performance of our EMG array based
recognition system towards the range of 20− 30%,
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Figure 4: Word-Error-Rates (WER) using the direct and the back-projection method, using no artifact detection (red), temporal
signal based artifact removal (blue), spatial artifact removal with absolute thresholds (dark green), or spatial artifact removal
with k-best (light green)

which is what (Wand and Schultz, 2011) report for
the same session lengths and vocabulary sizes for sin-
gle electrode based continuous speech recognition.

Using about 7 times as much training data, (Wand
and Schultz, 2011) achieve an error rate of 10.45%.
At the same time, using about 30 times as much train-
ing data, (Deng et al., 2012) achieve an error rate of
3.1%. We thus expect that Word Error Rates for our
array based system will drop further if more training
data are used.

However, please note that it is difficult to compare
the results of EMG based ASR approaches between
research groups quantitatively, as the difficulty of the
problem at hand varies with sensor positioning, ses-
sion length, vocabulary size, the language used and if
isolated words or continuous speech are recognized.

7 CONCLUSION

We have shown that the proposed spatial artifact re-
moval reduces the WER of an EMG array based
speech recognition system significantly. Furthermore,
the spectrum of spatial patterns provides a promising
feature to classify ICA components in EMG arrays: It
discriminates spatially smooth components well from
components that consist only of a few distinct chan-
nels. The spatial method capitalizes on the continuity
of EMG signals recorded in close proximity, as op-
posed to technical artifacts which usually occur in iso-
lated channels. Our experiments show that the spatial
method performs at least as good as existing temporal
signal based artifact detection methods.

Concerning the back-projection of ICA compo-
nents vs. their direct use, we found out that the di-

rect approach is preferable. We thus conclude that the
application of an ICA transformation seems to have a
positive effect for itself, even without any removed ar-
tifacts. This confirms results by (Wand et al., 2013a),
who examined the same question using their temporal
signal based artifact detection method.
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