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ABSTRACT

In Vocal Tract Length Normalization (VTLN) a linear or
noninear egfiency transformation compensates for different
vocal rect tengths. Finding @gsoichates for the speaker
specific warp @rametersisa aitical $sue. Despite goodresults
using the Maximum Likelihood criterion to find g@rameters for
a linear warping, there re ancerns using this method We
searched for a new criterion that enhances the inter-class
separability in addition to  tpizing the distribution f esch
phonetic lass.cUsing such a riterion, Linear Discriminant
Analysis determines a linear transformation in a lower
dimensional space. For VTLN, we keep the dimension constant
and warp the training samples of each speaker such that he't
Linear Discriminant s optimized. Although that criterion
dependson al taining samples of al speakersit can iteratively
provide speaker specific warp factors. We discuss how this
approach can B pplied in speech recognition and pesent first
results ontwo dfferent recognition tasks.

1 Speaker Normalization using VTLN

Vocal Tract Length Normalization (VTLN) has proven to
decrease the word error aterof a speech recognition system,
compared to systems not using such an approach to reduce the
variability introduced lfferent dpeakers. The main effect
addressed ere s a shift of the formant frequencies of the
speakers caused thbly different vocal ract tengtHs. Two
issues have been investigated. The first s how to map
speaker’s pectrum on that of a standard” or average speaker,
depending awarp argmeter which is correlated with the
vocal tact ength. The other issue is how to find an appropriate
warp @ameter dr each speaker. Most studies assume that he
same Igaeithm is used for training and test, but his s not
always necessary.

[Acero (1990] has used a bilinear transform with ~ @nspeaker
dependent parameter. In a first attempt he observed that he t
algorithm chose  degenerate  seawhere |l anpit frames are
transformed into a oostant. Therefore, he néorced a oostant
average warping arameter over al speakers. Modeing the
vocal ract ast a uniform tube of length L, the formant
frequencies are propartiond to 1/L. Therefore, some gproaches
use dinear warp bthe frequency scaleto nonalize speakers.
The warp can edperformed in the time or spectral domain. In
the latter case, a new spectrum is derived byinterpolation o by
modifying the Md frequency filter bank. When the warp is
applied in the spectra domain, the problem of mismatching

frequency ranges occurs. [Wegmann et al (1996)] used a
piecewise linear spectral mapping to avoid this problem. They
estimated the dope of the transformation function asbd @n
maximum likelihoodcriterion. [Eide and Gish (1996)] proposed
a ompromise of different vowel models, namely the uniform
tube modd and the Helmholtz resonator. They warped the

frequency axisf of a speaker accordingto
3f
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The single warping aramefer k, was estimated sing the
speaker’s formant values and the ‘aerage formant values of al
speakers. [Gouvéa and Stern (1997)] used the first hree
formants to estimate a linear transformation.

In aprevious tdy [Zhan and Westphal (1997)], we ampared
the Maximum Likelihoodmethod (ML) with the formant based
approach and considered  ifflerent warping functions. The ML
method odperformed the formant based approach and was used
successfully  oa number of speech recognition tasks with the
Janus Speech Recognition Toolkit (JRTk) Finke et al (1997)].
We use piecewise linear warping function to interpolate the
spectral values as in [Wegmann et al (1996)]. Similar to their
experiments, it urhed tw t ebmportant o tseuonly  ieed
speech samples to calculate the likelihood score. An experiment
with ifferdnt feature streams (warped and t waoped) or
voiced and uived models howed that he tperformance is
better when sing a warped spectrum for all models. To dhin

€ ONgood warp factor estimates with  dy a very limited amourt of

test speaker data, we do t ose  gemeric voiced model o
calculate the likelihoodfor the different warps, but e aoustic
model of the recognizer. On a German sportaneous peech
recognition task (GSST), we hievedecsimilar esults for
estimating the VTLN parameter on a single utterance (average
duration: 7s) versus using al utterances of a speaker.

2 VTLN based ontheML Criterion

This ectisn escdbes how e wge the ML criterion in - r
system to @rive warp factors for eech speaker, and motivates a
new criterion that will be introduced in this paper.

To okein a speaker normalized system, we keep alist with om
warp factor for eech training speaker. The factors are initialized
with .0, which means no warp. Starting with a speech
recognition system withou VTLN, we try ifterent warps for
eech speaker and select he bne with the best kellhood

voiced speech samples. These factors are based aobroad
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distribution f wwarped speech atal ndacan lpne b fiast
approximation. After estimating warp factors for each speaker,
we perform an EM-update of the aoustic model using the new
factors. Thus the model can beiteratively improved.

Despite significant mprbvements, ML based VTLN has the
following randbacks. First, when applying an iterative warp
factor search as described above, we sometimes observed a drift
of the vexage warp factor. Withou any cross validation, the
feature space keeps hrimking. The samples are mapped such
that al coefficients are qual which might optimize the
likelihood Ibgives bad recognition results. A second concern
results if using Linear Discriminant Anaysis (LDA) as the last
preprocessing step to create sample vectors with a reduced
number of coefficients. LDA sdlects a sub space that facilitates
discrimination f given classes (phoremes or parts of it).
Variance within a lass, for example usedca iffbgent
speakers, is minimized. The optimal sub space will certainly b
different as oos as a speaker normalization scheme such as
ML-VTLN isintroduced. When we search for the warp factors,
we éher doit withou LDA or end upvith a subogtimal LDA
transform. In any case, we have to calculate  newa LDA
transformation matrix with the new factors and lave to train the
system again.

Theideaunderlying VTLN isto namalize the speech signals of
different speakers uchsthat sitimilsii to the speech f ao
“standard” or average speaker. ML-warp factors can t
guarantee such standardization lecause most recognizers model
speech B as Gaussian mixtures. They contain clusters (e.g.
male na femae speakers), and when a speaker is warped the
likelihoodmight by hghest when the samples are warped to the
nearest cluster.

We performed an experiment where we used oty ore Gaussian
per class. Thus the warp factors are forced to map al speakers
into a single luster. Another intention was to speed thp
system by reducing the omputational cost for calculating a
number of Gaussians for each class. On the German
Sportaneous Scheduling Task (GSST), we trained a smal
context-independent system with ML-VTLN. It had e
Gaussian fer class and sed Mél frequency spectral coefficients
without LDA. The drift effect was very strong and the training
resulted in egemkbrated warp arameters which  ad d good
likelihood but were seentially saless for speech recognition.
Based onthis experiment, we wanted a method that reduces the
variance of the phoretic lasses but does not destroy the
structure of the feature space, such that arecognizer is $ill able
to discriminate between classes.

3 VTLN based on theLD Criterion

3.1 ThelLinear Discriminant Criterion

The Linear Discriminant Criterion (LD) is based
covariance matrices of a given sample set. It s assumed that

each sample is assigned to a rta@@ class. For classification
purposes it S desirable that all samples of a lass build a small
scatter aroundthe cger of the less. The lass centers houd
be widely spread in the feature space. This can mathematically
be expressed by the following equation:

LD:m

W]

where T is the total covariance matrix faall samples and W is
the verage within covariance matrix f samples belongng to
thesameclass ¢; :

W:Zp(ci)'vvi

In Linear Discriminant Anaysis (LDA) Hukurega 1979, this
critdrion is maximized in a subspace of the origina feature
space defined by linear transformation. It siused to edive a
mx n matrix to reduce the n dimensional feature vectors to a
dimension m<n.

3.2 LD Warp Factor Estimation

For speaker normalization we want © find a parameter or each
speaker such that he samples of a phoretic dass have asmaller
variance, under the anstraint hét different classes can still be
discriminated. This is exactly what s méasured they LD
criYerion. Since we ca nboptimize the warp @rameters of all
speakers isnultaneously, we have loosen an iterative @proach
just k& in the ML based VTLN method A set of new amp
factorsistried for each speaker separately, while the parameters
for the other speakers are kept constant. The warp factor with
the best LD vaue is chosen for the next ieration. Note that his
value depends on al other speakers’ samples which are warped
according to their currently est warping factor. To avoid
recalculating the two covariance matrices using al samples of
the whole data base, we use the scheme depicted in Figure 1.

Our experiments howsthat he riew criterion is a u-shaped
function @ the warping factor. When ging the same simple
préfocessing as for the single Gaussian experiment with the
same number of classes, the Igarithm was able to find
warping aramejgrs which settle fter aasmal number of
iterations.

To compare with  rostandard ML-VTLN approach, we used
the same preprocessing and pdyphore classes as the recognizer.
Figure 2 shows the verage warp factor change between
iterations for LD and ML-VTLN. In the first étation, starting
with all factors equal 1, LD-VTLN distributes the warp factors
more but hent edtess changes than ML-VTLN. Figure 3
shows the LD vaue for all speakers over the iterations. Since
this value depends on the warp factors only, we ould aso
determine it for the ML-VTLN. The value for iteration Ostands

the onfor the system without VTLN vhich means all warp factors are

set ot .MWith &y ernteration this value ocld elincreased
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Given: Samples of all speakers and their phoretic classc.

1. Accumulate dl samples x, of a dass ¢ in a mean accumulator
m, and al samples in a scatter accumulator S. The samples are
warped according to the arrent warp factor of the speaker they

belongto.
m = inj
j
- T
ij

Note that with these two accumulators and the oeirts for each
class, Wand T and therefore LD can be calcul ated.

2. For each speaker:

O Warp the samples of the speaker according to the
current warp factor and remove their contribution from
the umulatere Keep them as my(speaker) and

S(speaker).

For eech warp f abset of warp factors within a grid
window aroundthe current one:

O Warp the samples of the speaker and
accumulate it to m(speaker) and S(speaker).

O Usethese aoomulators to calculate LD(T,W)
for the considered warp factor and speaker.

QO Pick the warp factor with the best LD for that
speaker.

3. Proceed with 1til hemvemage warp factor change fals
below athreshold or a maximum number of iterationis reached.

Figure 1: LD warp factor estimation scheme

by afactor of 2.3 byhe LD-VTLN training scheme. A similar
value was aso reached by the ML-VTLN in the 4th iteration.
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Figure 2: Average warp factor delta between iterations.
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Figure 3: LD values over 4 iterations.
4  Comparison with LDA

Since for the newly ropgeed LD-VTLN, we use the same
criterion as for LDA, we want o tiscliss the differences and
possihilities to combine them.

For LDA the samples are static in a given feature space. It will
pick the best “view” in a linear sub space such that he
coefficients will be decorrelated and dscriminative features will
be preserved. When sing LD-VTLN the dimension and the
feature space ae kept constant but e samples of each speaker
can lewarped util hey eventualy bild easier to @scriminate
clusters. The matrices T and W to calculate the LDA
transformation matrix are dyproduct of the LD-VTLN and so
LDA can e put ontop f id a any time. Since the oastic
model of the recognizer is not nvdved to find the warp
parameters as for the ML-VTLN, we could use the feature space
before the dimension reduction. The riterian can aso e
measured in the reduced space for any gven dmension, but tis
requires an additional step to perform the LDA for each speaker
and warp factor. For our experiments we therefore used the LD
criterionin the original space.

5 Experimentsand Results

In this sction, we present results using LD-VTLN ontwo ery
different speech recognition tasks and compare it with the ML-
VTLN. The first database ongsts of conversational German
speech from scheduling iadogsd [Finke et al (1997)]. The
second is a Chinese dictation task from the GlobalPhone project
[Schultz nd Waibel (1999]. They rqwide not only ifférent
speaking styles, but also very different language characteristics.

The German Spontaneous Scheduling dtabase (GSST) consists
of 1671 speakers with 14@0énces forutraining. The
compared systems are context dependent and use 2500clustered
polyphore models. The preprocessing is based oMel
cepstral coefficients with first and second rderoderivatives.
After cepstral mean subtraction, LDA is used to reduce the
input o timedsional feature vectors. Speaker adapted
Viterbi alignments to initialize the recognizers and to assign
each sample to aphoretic dass aswell asthe search @rameters
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were taken from a previous ML-VTLN system. A new standard
ML-VTLN system was trained epvouf combined warp/EM
iterations with fixed Viterbi alignments (see Figure 4). The
performance was very similar to previous VTLN systems.
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Figure 4: Warp factor distribution for ML-VTLN
(GSST, left: males, right: females) after 4 iterations
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Figure 5: Warp factor distributionfor LD-VTLN
(GSST, left: males, right: females) after 1 iteration

To train the LD system we took 2Geconds of every speaker to
estimate the warp factors. After the first warp iteration (see
Figure 5) we trained a new system over bur iterations with the
given Viterbi alignments, keeping the warping factors constant.
Both systems were tested sing 343terances of 70 speakers.
The ML-system achieved a word error ate of 15.4%, whereas
the LD-system was lighdy worse with  .6%5 The perfor-
mance could na beincreased by additional LD-warp iterations.

The Chinese database onsists of 77 training speakers with

5124 tterances (150,000 spoken itgh For the xperiments,

we used a ontextt dependent system with clidéred

polyphore models. The preprocessing is isnilar to the German

system except for 3 additional coefficients (e.g. zero crossing

rate) and areductionto 24nstead ©32 dnensions. Tested on
149 uterances from 6 dfferent speakers we foundthat he LD-

VTLN results in dlightly etter error ates in terms of pinyin

units.

Table 1 compares the systems' performance for both tasks with
and without speaker normalization. It shows that he trelative
error reduction ising VTLN is between 8% and 11%.

Task NoVTLN [ML-VTLN |[LD-VTLN
German SST 16.8% 15.4% 15.6%
Chinese Dictation 20.3% 18.4% 18.0%

Table 1: error rates on two speech recognition tasks
6 Conclusion and Future Work

In this paper, we proposed a new criterion for vocal tact éngth
normalization. We showed hwoit can é @plied to etimate a
new set of warping arampeters withou raining an acoustic
model based oBaussian mixtures. The derived mmalization
parameters can e foundwithin ofy afew iterationsand are a
goodas the one we get from our standard ML-VTLN. Memory
requirements for this approach are low since only ~ @matrix
and @wector per class are needed as accumulators. The new
criterion rermonize better with LDA and is more stable than the
ML approach. We think that we culd further benefit by ding
only certain classes for the vauation f ¢éhe LD-criterion. As
for ML-VTLN it might be better to saionly  phait lasses
that are affected by dfferent vocal tract lengths.
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