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Abstract
Continuous speech production is a highly complex process in-
volving many parts of the human brain. To date, no fundamen-
tal representation that allows for decoding of continuous speech
from neural signals has been presented. Here we show that
techniques from automatic speech recognition can be applied
to decode a textual representation of spoken words from neu-
ral signals. We model phones as the fundamental unit of the
speech process in invasively measured brain activity (intracra-
nial electrocorticographic (ECoG)) recordings. These phone
models give insights into timings and locations of neural pro-
cesses associated with the continuous production of speech and
can be used in a speech recognizer to decode the neural data
into their textual representations. When restricting the dictio-
nary to small subsets, Word Error Rates as low as 25% can be
achieved. As the brain activity data sets are fairly small, alterna-
tive approaches to Gaussian models are investigated by relying
on robust, regularized discriminative models.
Index Terms: electrocorticography, ECoG, speech recognition,
brain-computer interface

1. Introduction
Numerous members of the scientific community, including lin-
guists, speech processing technologists, and computational neu-
roscientists have studied the basic principles of speech and ana-
lyzed its fundamental building blocks. However, the high com-
plexity and agile dynamics in the brain make it challenging
to investigate speech production with traditional neuroimaging
techniques. Therefore, previous work has mostly focused on
isolated aspects of speech in the brain, but so far not on the
analysis and fully automatic decoding of brain activity during
continuously produced natural speech.

Studies provided evidence for a neural representation of
phones and phonetic features during speech perception [1, 2],
but did not investigate continuous speech production. Other re-
search studies investigated the dynamics of the general speech
production process [3, 4], which we extend by illustrating
the differences between phones in continuous production of
speech. Neural activity during the production of isolated phones
[5, 6, 7, 8, 9] or words [10] has been classified in different brain
imaging techniques. Extending this idea, the imagined produc-

tion of isolated phones was classified in [11]. [12] recently
demonstrated the classification of a full set of phones within
manually segmented boundaries during isolated word produc-
tion. In [13], we have shown that techniques from Automatic
Speech Recognition (ASR) can be applied to neural data to de-
code a textual representation from intracranial electrocortico-
graphic (ECoG) recordings. In addition, we show in this paper
that phones can be modeled with traditional Gaussian models
and compare them with a new modeling technique based on
sparse robust discriminative optimization by our DCR Frame-
work [14].

2. Material and methods
2.1. Participants and electrode placement

Seven epileptic patients (4 female) who underwent neurosurgi-
cal procedures for epilepsy at Albany Medical Center (Albany,
New York, USA) participated in this study. All participants
gave informed consent to participate in the study. The study was
approved by the Institutional Review Board of Albany Medical
College and the Human Research Protections Office of the US
Army Medical Research and Materiel Command. Participants’
ages varied between 18 and 56 (mean age of 31.0).
Electrodes were placed depending only on clinical needs of the
patients. Implanted electrodes were on the left hemisphere and
covered parts of the frontal and temporal lobes for all subjects.
Electrode grids (Ad-Tech Medical Corp., Racine, WI; PMT
Corporation, Chanhassen, MN) consisting of platinum-iridium
electrodes (4 mm in diameter, 2.3 mm exposed) with distances
of 0.6-1 cm, which were embedded in silicone were used. In
a post-operative CT scan, electrode positions were registered
and co-registered with a pre-operative MRI scan. To be able to
compare activations across subjects, electrode positions of all
subjects were co-registered in a common Talairach space [15].
Activation maps were rendered using the NeuralAct software
package [16]. See Figure 1 for electrode placement of all sub-
jects passing the data pre-selection process (see Section 2.2).

2.2. Experiment and data pre-selection

In this study, brain activity during overt speech production
of seven participants was recorded using electrocorticographic



Figure 2: Data recording and model training. Acoustic data and ECoG data are recorded synchronously. Acoustic data is then labeled
on phone-level using BioKIT. Labels from the acoustic data are then imposed on the neural data. After pre-processing, phone models
are trained from the neural data. These models are combined with a dictionary and a language model for automatic speech recognition
based on neural data.

Figure 1: Combined electrode montage of all participants after
pre-selection. Participant 1 (yellow), participant 2 (magenta),
participant 3 (cyan), participant 5 (red), participant 6 (green)
and participant 7 (blue). Participant 4 did not yield sufficient
activations related to speech activity and thus was excluded
from combined analysis.

(ECoG) grids that had been implanted as part of presurgical pro-
cedures preparatory to epilepsy surgery. ECoG measures elec-
trical potentials directly on the brain surface with high tempo-
ral and spatial resolution. Due to the location directly on the
brain surface, signals are unfiltered by skull and scalp. We used
BCI2000 [17] and eight 16-channel g.USBamp biosignal ampli-
fiers (g.tec, Graz, Austria) to record ECoG signals in this study.
Additionally, we recorded the acoustic waveform of the partic-
ipants’ speech in synchronization with the ECoG signals. Both
ECoG and acoustic signals were digitized at 9600 Hz.
In the experiment, participants had to read out text excerpts
that were displayed on a screen about one meter in front of
the participant. Text consisted of historical political speeches
(i.e., Gettysburg Address [18]), JFK’s Inaugural Address [19], a
childrens’ story (Humpty Dumpty [20]) or Charmed fan-fiction
[21]. The texts scrolled through the screen from right to left at
a constant rate, which was adjusted to the participants comfort
(rate of scrolling text: 42-76 words/min). Subjects had to read
the displayed text aloud as it appeared. Sessions were repeated
2-3 times. Table 1 summarizes data recording details for every
session.

The recorded texts were cut along pauses into 21 to 49
phrases, depending on the session length. We used our in-house

Table 1: Details for every recording session. Texts are abbre-
viated as follows: GA is Gettysburgh address, JFK is John
F. Kennedy’s inaugural speech, HD is Humpty Dumpty and
Charmed are Charmed fan-fiction texts.

Partic- Session Text |Phrases| Recording
ipant length (s)

1 1 GA 36 279.87
2 JFK 38 326.90

2 1 HD 21 129.87
2 HD 21 129.07
3 HD 21 126.37

3 1 Charmed 42 310.27
2 Charmed 40 310.93
3 Charmed 41 307.50

4 1 GA 38 299.67
2 GA 38 311.97

5 1 JFK 49 341.77
2 GA 39 222.57

6 1 GA 38 302.83
7 1 JFK 48 590.10

2 GA 38 391.43

speech recognition toolkit BioKIT [22] to phone-label the au-
dio recordings (see Section 2.3). Figure 2 shows experimental
setup and model training (see Section 2.6).
As a first step, we evaluated whether speech activity segments
could be distinguished from segments with no speech activ-
ity. We fitted a Gaussian model to all feature vectors contain-
ing speech activity and one to feature vectors when the partici-
pant was not speaking. Timings of speech and non-speech seg-
ments were extracted from the audio recordings. In a leave-one-
phrase-out validation, we then evaluated whether these models
could be used to identify speech activity above chance level.
Both sessions of participant 4 and session 2 of participant 5
did not show classification rates significantly above chance level
(paired t-test, p > 0.05) and were excluded based on this analy-
sis. The comparison against random activations was performed
as described in Section 3.1.



2.3. Cross-modality phone labeling

Acoustic recordings were phone-labeled using an English ASR
system, which was trained on broadcast news. The sequence
of phones was calculated by Viterbi forced alignment given
the transcribed texts and acoustic models of the ASR system.
We then adapted the Gaussian mixture model (GMM)-based
acoustic models using maximum likelihood linear regression
(MLLR). Finally, we repeated the Viterbi forced alignment us-
ing the adapted models of each session. These final phone align-
ments were then imposed on the ECoG data.
As the training data sets are rather small, we reduced the amount
of distinct phones by grouping similar phones together into 20
ECoG models.

2.4. Feature extraction

The neural signal data was continuously segmented into 50 ms
intervals with 25 ms overlap. This enabled the capturing of
the fast cortical process underlying phones and was still long
enough to robustly extract broadband gamma (70 – 170 Hz) ac-
tivity. Each segment was labeled with the corresponding phone
from the audio labeling. To calculate features, we first removed
linear trends in the raw signals from each channel. The signals
were then down-sampled to 600 Hz. Noisy channels were iden-
tified and excluded. We used common average re-referencing
on the remaining channels and used elliptic IIR low-pass and
high-pass filters to represent broadband gamma activity. To at-
tenuate the first harmonic of 60 Hz line noise, we applied an
elliptic IIR notch filter. For each channel c and interval i, we
calculated the signal energy Ei,c and applied the logarithm. We
concatenated the logarithmic broadband gamma power of all
channels into one feature vector Ei = [Ei,1, . . . , Ei,d]. Tem-
poral dynamics and context information were integrated by in-
cluding neighboring intervals up to 200 ms prior to and after the
current interval. Context of similar sizes have been found rele-
vant in other speech perception studies [23]. Resulting feature
vectors were thus stacked with four feature vectors in the past
and four in the future, i.e. Fi = [Ei−4, . . . , Ei, . . . , Ei+4]

>.

2.5. Identification of relevant regions and times

ECoG recordings have high temporal and spatial resolution
which allows us to trace the temporal dynamics of speech pro-
duction in the brain. We investigate the cortical regions with
high relevance by calculating the mean symmetrized Kullback-
Leibler divergence (KL-div) among phone models for each
recording position at every time interval. The Kullback-Leibler
divergence (KL-div) can be interpreted as the amount of dis-
criminability between the neural activity models in bits and
can be calculated in closed form for normal distributions. We
estimate the discriminability of a feature Ei,c (log broadband
gamma at a recording position for a specific time interval) by
calculating the mean KL-div between all phone-pairs for this
feature. The mean of all these divergences estimates the dis-
criminability of the feature Ei,c in bits. Figure 3 shows inter-
polated KL-divs on the combined electrode montage of all par-
ticipants for 200 ms prior to the onset of phone production, at
phone production and 200 ms after the phone production onset.

2.6. ECoG feature selection and phone model training

To limit model complexity for our Gaussian models, we se-
lected features with the largest average distance between phone
models based on the KL-div in the training data. The number of
features was selected automatically based on the distributions of

KL-div values. Feature selection was purely based on KL-divs
in the training data and did not include any prior knowledge
about suitable brain regions or time offsets. The feature space
was further reduced by applying a linear discriminant analysis
(LDA) using the phone labels to 20 dimensions.
We modeled each phone by a normal distribution. Thus, each
phone is characterized by the mean broadband gamma activity
and variance of the neural activity measurements at each elec-
trode and time offset. Due to the extremely limited amount of
data, we only trained one context-independent Gaussian model
for each phone, despite the fact that context effects during
speech production have been shown in neural data [24]. It
is important to keep in mind that a modeling of phones does
not contradict the representation of articulatory features during
speech perception ([2, 25]) and production ([26, 27]) in neural
recording, as various representations of acoustic phenomenons
are likely. The general idea of the model training is depicted in
Figure 2.

2.7. Decoding

To decode continuous speech from neural data, we used our in-
house speech recognition toolkit BioKIT [22]. We substituted
the acoustic model for our ECoG phone models, used a bi-gram
language model estimated on the texts read by the participants
and a standard English dictionary.

2.8. Vowel classification using discriminative models

In recent years, alternatives to Gaussian Mixture Models
(GMM) have become popular for acoustic modeling. Specifi-
cally, deep neural networks (DNN, [28]) have become a de facto
standard. As our data sets are very limited in size and DNNs are
known to require large amounts of data, we investigate an al-
ternative phone modeling approach that (1) uses discriminative
models instead of the generative Gaussian models, (2) combines
multiple sessions of the participants, and (3) models invariance
against non-stationarities in the training process.
Using this modeling approach we evaluated the frame-wise
classification of the five vowels (/a/, /e/, /i/, /o/, /u/) from neural
data. This classification task is particularly relevant for speech
decoding and challenging as vowels share multiple articulatory
properties and their production involves similar motor actions.
To the best of our knowledge, vowel classification from neural
data has not been investigated for continuous speech before.
We applied the DCR framework [14], our new Brain-Computer
Interface recognition framework using joint convex optimiza-
tion that is particularly designed to handle small amounts of
data by learning sparse discriminative models. In the DCR
framework, multiple so-called robustness directions in the fea-
ture space can be defined, whose influence is reduced during
the optimization. This enables to learn models that are robust
against signal variabilities, such as signal changes between mul-
tiple recording sessions and changes of the feature distributions
over time (non-stationarities). To incorporate invariance against
non-stationarities, we chose the robustness directions as follows
(similar idea as in [29]): For each of the five vowels, we split
the training features of a vowel c into 10 blocks of equal length
per session, and calculated the mean feature vectorsBc

k for each
block. We set the robustness directions dck as the difference be-
tween the average feature vector for this vowel in the training
data µc and the average feature vector of each of the blocks
in the training data set Bc

k, i.e. dck = µc − Bc
k. In a joint

optimization, sparse discriminative models are trained that are
regularized to be invariant in the robustness directions, i.e. are
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Figure 3: Temporal course of regions with high discriminability between phone models. Heat maps show regions of high discriminability
(red) according to mean Kullback-Leibler Divergences between models on a combined electrode montage of all participants (Talairach
space) that exceed chance level (larger than 99% of randomized discriminabilities). Starting 200 ms before the actual phone production,
early differences are present in diverse areas. Concurrent with production, high discriminability in sensorimotor areas can be observed.
200 ms after production, regions of highest discriminabilities correspond to auditory regions of the superior temporal gyrus.

invariant to within-class fluctuations in the data.

3. Results
3.1. Word decoding results

We evaluated our models in a leave-one-phrase out cross-
validation. To obtain a robust baseline for chance levels, we ran-
domized the labels by shifting the ECoG features by half of the
recording length. This way, data still showed typical ECoG be-
havior and label priors remained unchanged, but no correspon-
dence between data and labels should be found. Figure 4 shows
Word Error Rates (WER) for participant 7 session 1 (other par-
ticipants are omited due to the limited space available) for dif-
ferent dictionary sizes when decoding continuous speech from
neural data using Gaussian models. All WER are significantly
lower than the random models (paired t-test, p < 0.001). Figure
4 also shows phone true positive rates extracted from the most
likely phone path, compared to the acoustic labeling. Again,
our models are significantly better than chance level (paired t-
test, p < 0.001). Average true positive rates remain stable over
all dictionary sizes.

Figure 4: Word Error Rates depending on dictionary size.
ECoG speech models (green line) outperform random models
(red line) for all dictionary sizes. Bars (ECoG models green,
random models red) depict average true-positive rates across
phones depending on dictionary size.

3.2. Vowel Classification

For vowel classification, features were calculated as described
in section 2.4 for the Gaussian models. For the discriminative
models, no KLdiv feature selection and LDA compression has
been performed as the DCR framework implicitly performs a

feature selection by `1-norm regularization. The feature vectors
were restricted to vowel frames and classified frame-wise using
a 10-fold cross-validation with splits between phrases. Multi-
class classification was performed using the 1-vs-rest strategy.
Figure 5 shows the recognition results for the six participants
in terms of f-scores weighted by the prior distribution of the
phones. Whiskers indicate standard deviations across the dif-
ferent vowels. Randomization tests showed that all recogni-
tion results were significantly above chance level, except for
participant 6 (one-sided, paried Wilcoxon signed rank tests,
p < 0.05). The classification using the DCR framework shows
improvements in recognition rates over Gaussian models for
all participants except participant 1. It achieved significant im-
provements in weighted f-score over Gaussian models (partici-
pants 2, 3 and 5, paired Wilcoxon signed rank tests, p < 0.05)
by up to 6.8% (absolute) and 2.8% (absolute) on average.
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Figure 5: Weighted f-scores of frame-wise vowel classification.
Figure shows results of the DCR framework models (blue) in
comparison to Gaussian models (green). Whiskers indicate
standard deviations across the different vowels.

4. Conclusion
In this paper we showed that techniques from ASR can be used
to continuously decode speech from neural data. While good
WER can be achieved for small dictionary sizes, they increase
drastically with increasing size. We therefore investigated an
alternative approach for ECoG phone models. The evaluation
of frame-wise vowel classification using the DCR framework
showed promising results.
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