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Human activity recognition (HAR) plays a pivotal role in various domains,
including healthcare, sports, robotics, and security. With the growing
popularity of wearable devices, particularly Inertial Measurement Units (IMUs)
and Ambient sensors, researchers and engineers have sought to take advantage
of these advances to accurately and efficiently detect and classify human
activities. This research paper presents an advanced methodology for human
activity and localization recognition, utilizing smartphone IMU, Ambient, GPS, and
Audio sensor data from two public benchmark datasets: the Opportunity dataset
and the Extrasensory dataset. The Opportunity dataset was collected from
12 subjects participating in a range of daily activities, and it captures data from
various body-worn and object-associated sensors. The Extrasensory dataset
features data from 60 participants, including thousands of data samples from
smartphone and smartwatch sensors, labeled with a wide array of human
activities. Our study incorporates novel feature extraction techniques for
signal, GPS, and audio sensor data. Specifically, for localization, GPS, audio,
and IMU sensors are utilized, while IMU and Ambient sensors are employed
for locomotion activity recognition. To achieve accurate activity classification,
state-of-the-art deep learning techniques, such as convolutional neural
networks (CNN) and long short-term memory (LSTM), have been explored.
For indoor/outdoor activities, CNNs are applied, while LSTMs are utilized for
locomotion activity recognition. The proposed system has been evaluated using
the k-fold cross-validation method, achieving accuracy rates of 97% and 89% for
locomotion activity over the Opportunity and Extrasensory datasets, respectively,
and 96% for indoor/outdoor activity over the Extrasensory dataset. These results
highlight the efficiency of our methodology in accurately detecting various
human activities, showing its potential for real-world applications. Moreover,
the research paper introduces a hybrid system that combines machine learning
and deep learning features, enhancing activity recognition performance by
leveraging the strengths of both approaches.
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1 Introduction

The advancement of sensing technologies (Jiang and He, 2020;
Zheng et al., 2023a), notably has catalyzed progress in human
activity recognition (HAR). These sensors, pivotal in health
(Sobhan et al., 2021; Hussain et al., 2022; Zheng et al., 2023b)
and safety monitoring (Reddy et al., 2016; Mao et al., 2022a) in smart
environments (Guo et al., 2022; Jiawei et al., 2022; Liu et al., 2023g),
aim to be both accurate and nonintrusive. Wearable sensors (Saboor
et al., 2020; Bhelkar and Shedge, 2016; Perez and Zeadally, 2021)
with their potential to capture granular movement data, have
introduced new possibilities in HAR (Liu et al., 2023a). However,
their challenges (Saboor et al., 2020; Liu and Schultz, 2019; Bhelkar
and Shedge, 2016) concerning battery life and user acceptance
underscore the importance of a balanced approach. Tools like
infrared sensors (Perez and Zeadally, 2021; Liu et al., 2022a) and
recent 3D data acquisition systems (Yu et al., 2023; Bruno et al.,
2015) such as Microsoft Kinect (Zhao et al., 2023; Liu et al., 2022b;
Shen et al., 2022) are emerging as robust alternatives, offering
precision without compromising user privacy. As HAR
technologies evolve, integrating wearables and non-intrusive
sensors, the field is poised to offer deeper insights into human
behavior (Zhang et al., 2012b; Puangragsa et al., 2022) enhancing
security, health monitoring, and infrastructure management
(Kamarudin, et al., 2014; Hu et al., 2022; Hassan and Gutub, 2022).

This research paper discusses the application of a Smart inertial
measurement unit (IMU), global positioning system (GPS), and
audio sensors, along with ambient sensors, for human activity
recognition (Zheng et al., 2022; Meng et al., 2022). The
combination of these sensors offers a comprehensive approach to
capturing diverse aspects of human movements and actions. IMUs,
which consist of accelerometers, gyroscopes, and magnetometers,
provide precise motion and orientation data. In conjunction with
Ambient Sensors that capture contextual information, these sensors
provide insight into human activities in real-world scenarios. To
achieve accurate and context-aware activity recognition, advanced
signal processing techniques are used to extract relevant features
from the data these sensors collect. Novel feature extractionmethods
have been designed for signal (Hartmann et al., 2022; Hartmann
et al., 2023), GPS, and audio sensor data, enriching the system’s
ability to discern patterns and characteristics associated with
different activities. To effectively process the information from
GPS, Audio, and IMU Sensors, a Yeo-Johnson power
transformation is applied for optimization. Simultaneously, IMU
and Ambient features are optimized and harnessed for the
identification of locomotion activities, showcasing the versatility
of the proposed approach. Given the complexity and diversity of
human activities, state-of-the-art deep learning techniques are
employed to develop a robust and accurate HAR system (Qi
et al., 2022; Wang et al., 2022; Yan et al., 2023; Ronald et al.,
2021; Poulose et al., 2022; Poulose et al., 2019a). Convolutional
neural networks (CNN) (Zhang et al., 2023; Wen et al., 2023a;
Gangothri et al., 2023; Leone et al., 2022) are used for recognizing
indoor/outdoor activities, while long short-term memory (LSTM)
(Yao et al., 2023; Zheng, Y. et al., 2022) networks are chosen for
locomotion activity recognition (Hu et al., 2023; Liu and Schultz,
2018; Liu et al., 2022c). The integration of CNN and LSTM allows
the system to leverage spatial and temporal dependencies, thus

enhancing overall recognition performance. The proposed HAR
system (Zhou and Zhang, 2022; Xue and Liu, 2021; Zhao et al., 2022)
is evaluated using the Opportunity and Extrasensory datasets, which
are well-established benchmarks in the field of localization activity
recognition (Zhu et al., 2023; Qu et al., 2023a; Qu et al., 2023b; Liu
et al., 2023a). The results underscore the effectiveness of the
approach, achieving remarkable accuracies of 97% and 89% for
locomotion activity over the Opportunity and Extrasensory datasets,
respectively, and 96% for localization activity over the Extra-sensory
dataset. These findings attest to the potential of Smart IMU, GPS,
Audio, and Ambient Sensors in precisely identifying and classifying
a range of human activities (Gioanni et al., 2016). Beyond exploring
deep learning techniques, this research paper introduces a hybrid
system (She et al., 2022; Liang et al., 2018; Liu et al., 2022d; Vrskova
et al., 2023; Surek et al., 2023) that blends machine learning and deep
learning features. By capitalizing on the strengths of both paradigms,
the hybrid system further sharpens activity recognition, signaling a
promising avenue for future research and development. The
primary findings and contributions of this study are outlined below:

• Development of robust denoising techniques tailored for
signal and Audio sensor data, enhancing activity
recognition accuracy.

• Extracting novel features for detecting human localization
information.

• Development of a hybrid system that combines machine
learning and deep learning features to further improve
activity recognition performance.

• Furthermore, a comprehensive analysis was performed on
well-known benchmark datasets, which feature diverse
human actions and advanced sensors.

The subsequent sections of this paper are organized as follows:
Section 2 presents a comprehensive literature review of existing

methods in the field of human activity recognition. In Section 3, the
proposed system is thoroughly discussed. The experimental setup
and the results obtained from the conducted experiments are
outlined in Section 4. In Section 5, we discuss the system’s
performance, limitations, and future directions. Finally, in Section
6 conclusions drawn from the research are presented.

2 Literature review

Various methods exist for recognizing human activity, with
some researchers utilizing RGB cameras, others employing
wearable sensors, and some leveraging multimodal sensor
approaches.

2.1 Visual sensor-based human locomotion
recognition

A new technique for pulling out details about joints and
skeletons from images was introduced in a study (Batchuluun
et al., 2021). The method started by changing an original thermal
image, which had 1 channel, into an image with 3 channels. This
change was done to combine the images in a way that would help get
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better results when pulling out information. The study used a tool
called a generative adversarial network (GAN) to help extract details
about joints and skeletons. Furthermore, the study tried to recognize
different human actions using the information pulled out about
joints and skeletons. The recognition of human actions was done by
using two tools together: a CNN and LSTM. When they tested their
method using their own collected data and also open data, the study
found that their method worked well compared to other top
methods. However, the system could not detect images that have
low spatial textual information, due to which the system causes low
performance. The study (Yin et al., 2021) developed a model to
detect different human actions in a real-time healthcare
environment. The authors utilized a multichannel LSTM. This
system, built to detect actions through three-dimensional
skeleton data, incorporated a unique loss function to enhance its
accuracy. They used two benchmark datasets: one is NTU RGB + D
and the second is TST fall detection datasets. However, the system
has limitations in achieving flawless skeleton data due to a frame-
level error detection approach and struggles with identifying the
roots of issues related to dimensionality, which in turn impacts the
overall accuracy of the system. In another study (Chen et al., 2023),
the authors concentrated on recognizing actions through different
video frames. Residual CNN and a second spatial attention module
are utilized for the recognition of actions. The proposed system does
not have integrated optical flow maps, which adversely impacts the
performance of the system.

2.2 Human locomotion recognition via
wearable technology

In the work conducted by Mutegeki and Han, (2020), an
integrative deep learning architecture for activity recognition was
introduced, utilizing a CNN-LSTM model. This approach aimed to
enhance predictive accuracy for human activities derived from raw
data while simultaneously reducing model complexity and negating
the necessity for intricate feature engineering. The pro-posed CNN-
LSTM network was devised to be deep in both spatial and temporal
dimensions. The model manifested a 99% accuracy rate on the iSPL
dataset (an internal dataset) and 92% on the publicly available UCI
HAR dataset. However, the findings indicate a decline in
performance when addressing complex actions, such as atomic-
level activities. Additionally, as the model complexity amplified, the
SoftMax loss also escalated, suggesting that the concurrent use of
CNN and LSTM layers did not enhance the outcomes. Jaramillo
et al. (2022) utilized a technique called Quaternion filtration by using
single sensor data. In the next step, different segmentation
techniques have been used to segment the data. Subsequently,
features are extracted. Finally, for the classification of activities,
the LSTM classifier has been utilized.We identified that the system is
more computationally expensive. Hu et al. (2023), presents a system
for human activity recognition is presented using IMU sensors, and
the data was collected from Wearable devices. Different techniques
are utilized to preprocess the data, including moving averages,
sliding overlap windows, and data segmentation. For recognition
of activities, five different classifiers are used including CNN,
recurrent neural network, LSTM, bidirectional LSTM (BiLSTM),
and gate recurrent unit. Due to a huge number of epochs, the

proposed system is very expensive in terms of time complexity.
Recently, the hidden Markov model (HMM) has entered the field of
vision of researchers (Liu and Schultz, 2018). Its inherently logical
modeling capability of time series endows human activity
recognition with a certain degree of interpretability.

2.3 Human locomotion recognition through
multisensor systems

The study (Hanif et al., 2022) presents a multimodal locomotion
system, utilizing the Opportunity++ and HWU-USP datasets for
their study. The data was subjected to various pre-processing
techniques; for image-based data, the skeleton was initially
extracted, while for inertial sensors, the noise was removed
followed by segmentation. Various features, including Pearson
correlation, linear prediction, and cepstral coefficients, were
extracted. The classification of locomotion was performed using a
recursive neural network. Nonetheless, the confidence levels
obtained for each extracted skeleton body point do not meet the
desired standards, particularly for both ankle points. In another
multimodal system, proposed (Nafea et al., 2022) data was collected
using smart devices. For preprocessing the raw sensor data, different
methods such as filtration, windowing, and segmentation were
utilized. Multiple features were extracted, including time-based,
statistical, frequency-based, and rotational features. Furthermore,
various machine learning classifiers have been explored to classify
both complex and basic activities, such as k nearest neighbour
(k-NN), neural networks, and Naïve Bayes. However, these
learning approaches tend to be susceptible to errors and often
deliver suboptimal accuracy in the context of human locomotion
recognition (HLR), resulting in performance that does not achieve
satisfactory outcomes. In another study (Ma et al., 2023) a system
was proposed to remotely monitor people, utilizing multimodal
sensors to monitor activities. CNN and gated recurrent unit (GRU)
were explored for recognizing different human activity patterns.
Nonetheless, the suggested approach did not yield strong results due
to significant losses in both the training and validation sets (M.
Ronald. et al., 2021). use the iSPLInception model a deep learning
architecture based on the synergistic combination of Inception
modules and ResNet strategies. By refining these components,
the model achieves a significant balance between depth and
computational efficiency, essential for real-time processing. The
researchers focused on enhancing predictive accuracy for HAR
while ensuring the model’s feasibility on devices with constrained
computational resources. Through extensive benchmarking across
diverse datasets, the iSPLInception demonstrates robustness in
classifying a variety of activities. A comparison with other deep
learning models such as LSTMs and CNNs confirmed its superior
performance, making a notable contribution to the HAR domain.
The methodology outlined by the authors provides a scalable
solution that paves the way for future research in activity
recognition using wearable sensor data. Poulose. et al. (2022)
proposes an innovative approach to human activity recognition
(HAR) using a system referred to as HIT (Human Image Threshing)
machine. This system employs a smartphone camera to capture
activity videos, which are then processed using a mask region-based
convolutional neural network (R-CNN) for human body detection.
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The process also includes a facial image threshing machine (FIT) for
image cropping and resizing. The core of the HIT machine’s
methodology is its ability to clean and preprocess data, followed
by deep feature extraction and model building for activity
classification. The system is tested with various deep learning
models like VGG, Inception, ResNet, and EfficientNet, achieving
remarkable accuracy in classifying activities such as sitting, standing,
walking, push-ups, dancing, sit-ups, running, and jumping. This
approach significantly outperforms traditional sensor-based HAR
systems, demonstrating the effectiveness of vision-based activity
recognition using deep learning models.

3 Materials and methods

3.1 System methodology

In this work, we follow a multistep approach to process and
analyze data from different types of sensors (Ahmad, 2022; Zhang
et al., 2022a; Latha et al., 2022). Initially, we address the issue of noise
in the raw signal and use distinct filters for each sensor type.
Specifically, we use a Butterworth filter for the IMU and
Ambient sensors and a median filter for GPS and audio data.
Next, to efficiently handle large sequence data, we utilize
windowing and segmentation techniques. This allows us to break
down the data into smaller segments, facilitating more effective
processing. In the third step, we focus on extracting advanced
features from different types of sensors. These features include
statistical, phase angle, autoregressive modelling, and linear
prediction features. Additionally, for the IMU and audio data, we
extract various features such as step count, step length, and

Mel-frequency cepstral coefficients (MFCCs). All of these features
are further optimized and combined using the Yeo-Johnson power
transformation. Optimized GPS, IMU, and audio sensor features are
then sent to a CNN for localization activity analysis, while the IMU
and ambient sensor features are directed to an LSTM network for
locomotion activity recognition (Jaiwei et al., 2022; Zhang et al.,
2022b; Rustam et al., 2020). The proposed system’s architecture is
visually represented in Figure 1.

3.2 Noise removal

The data was collected from raw sensors that include noise.
Noise is unwanted data or irrelevant data due to many reasons
during data collection. So, to handle the noise, we used 2 types of
filters because of different types of sensor data. To remove noise
from the IMU and ambient sensors, we used a third-order
Butterworth filter (Bae et al., 2020; Liu et al., 2023f; Cömert
et al., 2018; Sulistyaningsih et al., 2018) (i.e., n � 3) was used.
The choice of this order strikes a balance between achieving a
reasonable roll-off and minimizing signal distortion. The critical
frequency fc, was set to 10% of the Nyquist frequency, represented
as Wn � 0.1. This ensures that frequencies beyond 10% of the
Nyquist frequency are attenuated, providing a smooth output
while preserving the essential characteristics of the input signal.
The magnitude response of a Butterworth filter in the frequency
domain is given by

H f( )∣∣∣∣ ∣∣∣∣ � 1��������
1 + f

fc

2n( )√

FIGURE 1
The architecture of the proposed system.
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H(f) represents the magnitude of the filter response at frequency
f. fc is the critical frequency, which is the frequency at which the
filter’s response is 1�

2
√ of its maximum (or passband) response, n

denotes the order of the filter, dictating the steepness of the roll-
off. Higher order results in a sharper transition between the
passband and the stopband. Similarly, for the GPS and
microphone sensors, we used a median filter (Altun and
Barshan, 2010). To apply the median filter, we used a kernel
of size 3, which essentially means that for each data point, the
filter considered it and one neighboring data point on each side.
The median value of these three points then replaced the original
data point. Mathematically, for each component, the median of
the current value and its neighbors was computed, producing the

filtered data. Mathematically, the filtered acceleration for each
component can be expressed as

Sx � median(x i − k[ ], x i − k + 1[ ], . . . .x i + k[ ]
Sy � median(y i − k[ ], y i − k + 1[ ], . . . .y i + k[ ]
Sz � median(z i − k[ ], z i − k + 1[ ], . . . .z i + k[ ]

where Sx, Sy, and Sz are the signal.
Post the filtering process, to synthesize a unified representation

of the signal component, we then employed the
Pythagorean theorem:

magnitudefiltered �
�����������������
Sx( )2 + Sy( )2 + Sz( )2

√

FIGURE 2
(A) Butterworth filter for accelerometer sensor; (B) median filter for GPS sensor.

FIGURE 3
Blackman windows for the first five segments.
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However, it is important to note that the GPS sensor has
less noise compared to other sensors, which can be seen
in Figure 2B.

3.3 Windowing and segmentation

To window and segment large sequence data for efficient
processing, we turned to the Blackman window (Kwapisz et al.,
2011) windows technique to modulate the signal. Windows
plays an important role in this phase. By applying a
Blackman window to the signals during segmentation, we
smooth the abrupt beginnings and endings of segments,
thereby reducing spectral leakage, a phenomenon where
energy from one frequency leaks into another, potentially
obscuring important features. This ensures that the Fourier
transform of the windowed signal provides a more faithful
representation of its frequency content. Furthermore, in
human activity recognition, activities can span varying
durations and might be best represented by capturing their
essence within specific windows (Poulose et al., 2019b). The
Blackman window, with its inherent properties, ensures that
each segmented frame is appropriately weighted, reducing
discontinuities at the boundaries. This results in improved
frequency domain representations, enabling more accurate
feature extraction, and consequently more precise activity
recognition. Mathematics of the Blackman Window is

Wn � 0.42 − 0.5 cos
2πn
N − 1

( ) + 0.8 cos
4πn
N − 1

( )
whereW (n) is the window function.N is the total number of points
in the window, and n ranges from 0 to N − 1. For our specific
implementation, we used a 50-sample window to represent 5 s (He
and Jin, 2008; Hao, 2021; Liu et al., 2021; Hatamikia et al., 2014) of

activity with 25% overlap. After generating the Blackman window
values based on the formula, we multiplied each point in our data
segments with its corresponding Blackman window value. To bring
clarity to our process, we visualized the results through distinct line
plots, with each of the five windows represented in a unique color in
Figure 3, and Algorithm 1 shows the working of the Blackman
windowing technique.

Input: Time-series data array D

Window size N

Output: List F containing feature vectors for

each segment

Method: Create a Blackman window W of size N

Initialize an empty list F to store feature vectors

for each segment

For i = 0 to length of D − N with a step size of N:

Extract a segment S from D [ i: i + N ]

Multiply S with W element-wise to get Swindowed

Compute features f from Swindowed Append f to F.

return list F containing feature vectors for

each segment

Algorithm 1. Blackman Windowing and Segmentation

3.4 Feature extraction for
locomotion activity

Another essential step in this research is the extraction of
features, ensuring that the model effectively recognizes data
patterns. We derived unique features for various sensor types.
For both IMU and Ambient sensors, we extracted features such
as phase angle, linear predictions, FFT Max/Min, Shannon entropy,
skewness, kurtosis, and autoregressive analysis.

FIGURE 4
Phase angles were calculated from the accelerometer data over the Opportunity dataset.
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3.4.1 Phase angle
Phase angles hold significance in signal analysis, particularly in

the field of human activity recognition. Phase angles capture the
temporal alignment and synchronization of cyclic movements,
helping in the extraction of valuable information from complex
signals (Zhang, 2012; Liu et al., 2022a). These angles provide insight
into the relative timing of movements in different dimensions,
enabling the identification of specific activities and patterns.
Mathematically, the phase angle between two signals A and B
can be calculated using the arctangent function, which takes into
account the ratio of their spectral components in the frequency
domain. For accelerometer data, the phase angle between the x and
y components (ϕxy), x and z components (ϕxz), and y and z
components (ϕyz), can be computed as

ϕxy � arctan
FFT Ay( )
FFT AX( )( )

ϕxz � arctan
FFT Az( )
FFT Ax( )( )

ϕyz � arctan
FFT Az( )
FFT Ay( )⎛⎝ ⎞⎠

where FFTAx, FFTAy, and FFTAz represent the fast Fourier
transforms of the x, y, and z components of the sensor data,
respectively. Figure 4 exemplifies the phase angles calculated in
XY graphically.

3.4.2 Auto regressive model
Autoregressive (AR) modeling (Li et al., 2020; Xu et al., 2016;

Gil-Martin et al., 2020a) is a powerful technique in signal analysis,
particularly for human activity recognition. It involves predicting a
data point in a time series based on previous data points and
capturing temporal dependencies and patterns. This is especially
useful in recognizing periodic or rhythmic activities, as the model
captures the repeating patterns inherent in activities like walking,
running, or cycling. By comparing the predicted and actual values,
deviations can be detected, helping to identify anomalies or changes
in activity patterns (Bennasar et al., 2022; Liu et al., 2021). For

example, variations in step lengths, gait irregularities, or sudden
changes in motion can be indicative of different activities or health
conditions (Wen et al., 2023). We used an AR model to model the
time series data for the walking activity opportunity dataset. In an
AR model, the value at time t is predicted as a linear combination of
the p previous values. For an AR model of order p, the value Xt at
time t is modeled as

Xt � c +∑p
i�1
ϕiXt−1 + εt

where:Xt, is the value at time t, c is a constant, ϕi are the parameters
of the model and εt is the white noise. After fitting the AR model to
the data, we used the model to make predictions for future points.
The prediction step is based on the AR model equation. For each
future point Xt, the predicted value is calculated as

X̂t � c +∑p
i�1
ϕiXt−1

The difference between the actual AR model and the prediction
step is that the actual AR model includes a noise term εt while the
prediction step does not. The noise term represents uncertainty and
random fluctuations that cannot be predicted by the AR model.
Thus, it is not included in the prediction step. Finally, we plotted the
difference between original and predicted time series data
in Figure 5.

3.4.3 Linear prediction for signal
After calculating the autoregression, we then calculated the

linear prediction. Linear prediction is a powerful method
employed in signal analysis for uncovering meaningful patterns
and trends in data. This approach is particularly useful when dealing
with time-series data, such as movement patterns. This concept
finds the relationship between current and previous data points;
linear prediction enables us to forecast how the signal might evolve
over time. This predictive capability enables the identification of
distinctive movement patterns and characteristics that are indicative
of specific activities. We preprocess the accelerometer data to ensure
its quality and reliability. We then apply linear prediction techniques

FIGURE 5
Difference between the original and predicted time series from the accelerometer data of the activity “walking” over the Opportunity dataset.
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to model the temporal patterns of each activity. This involves
training linear models that predict future data points based on a
history of previous observations. The optimization of model
coefficients is carried out to minimize prediction errors, resulting
in predictive models that capture the underlying motion dynamics.
For a time, series x_t, linear prediction estimates xt as a weighted
sum of p previous values xt−1, xt−2,. . .. . . apxt−p:

xt�c + a1xt−1 + a1xt−2+/ + apxt−p

where c is a constant term and a1, a2,. . .., ap are the coefficients of
the linear model. These coefficients are determined through
optimization methods that minimize the prediction error.
Figure 6 portrays the linear prediction for walking activity.

3.4.4 Fast fourier transformation (FFT) min/max
and entropy

We first calculated FFT (Javeed et al., 2021; Li et al., 2018), a
mathematical algorithm that unveils the frequency-domain

representation of a time-domain signal. By applying FFT to sensor
data, it becomes possible to uncover the underlying frequency
components inherent in various human activities. Peaks and
patterns in the resulting frequency spectrum can be associated with
specific motions or actions, offering crucial insights into the dynamic
nature of movements (Liu, 2021). We calculated the minimum and
maximum components from the FFT spectrum. It can be calculated as

X f( ) � ∫∞

−∞
x t( )e−j2πftdt

where X(f), is the frequency-domain representation, x(t), is
the time-domain signal, f is the frequency, and j is the
imaginary unit. Furthermore, we extracted the Shannon
entropy feature. In the context of signal analysis for human
activity recognition, Shannon entropy (Khairy, 2022) can reveal
the complexity and diversity of frequency components in the
signal. Higher entropy values suggest a broader range of
frequencies and more varied motion patterns.
Mathematically, it can be computed as

H � −∑N

i�1p fi( )log 2p fi( )
where N is the number of frequency bins, fi is the ith frequency bin
and p(fi) is the probability of occurrence of fi in the signal’s
frequency distribution These features are demonstrated in
Supplementary Figure S1.

3.4.5 Skewness
Skewness and kurtosis (Wang et al., 2021; Ramanujam et al.,

2019; AlZubi et al., 2014) are statistical measures that describe the
shape and characteristics of a distribution. Skewness quantifies the
extent and direction of the skew in the data. A negative skew
indicates that the left tail is longer, while a positive skew
indicates a longer right tail. The mathematical equation for
skewness (Yu et al., 2021; Zhang et al., 2021; Qi et al., 2022;
Zheng et al., 2023c) is

Skewness � ∑n
i�1 xi − �x( )3
N − 1( ).s3

FIGURE 6
Difference between the original and linear predicted time series from the accelerometer data of the activity “walking” over the Opportunity dataset.

FIGURE 7
Skewness is calculated from the Opportunity (left) and
Extrasensory (right) datasets.
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where xi are the individual sample points, �x is the sample mean, s is the
standard deviation (Liu et al., 2021; J, X. et al., 2022; Mao et al., 2022b;
Guo et al., 2022; Xu et al., 2022b), and N is the number of samples.
Figure 7 shows skewness for different activities over both datasets.

3.4.6 kurtosis
Kurtosis (Lu et al., 2023; Liu et al., 2023b; Liu et al., 2023c; Liu

et al., 2023d) on the other hand, measures the tailedness of the
distribution. Higher kurtosis indicates a more extreme result,
meaning that more of the variance is the result of infrequent
extreme deviations, as opposed to frequent modestly sized
deviations (Miao et al., 2023; Di et al., 2023; Ahmad et al., 2020;
Liu et al., 2023e). The mathematical equation for kurtosis is

Kurtosis � ∑N
i�1 xi − �x( )4
N − 1( ).s4 − 3

Both skewness and kurtosis provide valuable information on the
nature of variability in a set of numbers and are especially useful in
the field of Human Activity Recognition (HAR) to distinguish
between different types of activity. Skewness could provide clues
about the symmetry of the user’s motion, and kurtosis could indicate
the extremity of the user’s activities. We extracted kurtosis for
different types of activities in Figure 8.

3.5 Feature extraction for location-
based activity

For localization activity, we extracted separate features. These
features include step count detection, step length calculation (Gu
et al., 2017; Kang et al., 2018), and MFFCs. We describe each feature
in detail one by one.

3.5.1 Step count detection
In indoor localization and activity recognition, the step count

(Sevinç et al., 2020; Gu et al., 2019) emerges as an important metric
with multifaceted applications. It serves as a fundamental parameter

for activity profiling, aiding in the differentiation of various human
movements such as walking, running, or standing. Key features like
step count and heading angle are integral to the development of
robust and precise indoor localization systems, especially in
environments where GPS signals are weak or entirely absent
(Zhang and Jiang, 2021; Xu et al., 2023).

The step count was determined using accelerometer data (Pham
et al., 2021) collected from the waist of the subject during walking
activity. First, we combined the raw acceleration data along the x, y,
and z axes to form a composite magnitude signal. This signal was
then shifted to ensure that all values were positive. The mean of the
shifted signal was calculated, and peaks that exceeded this mean
were identified and counted as steps in Supplementary Figure S2.
The magnitude of the acceleration A was calculated as

A �
����������
x2 + y2 + z2

√

3.5.2 Step length estimation
Step length, or stride length (Ahn and Yu, 2007; Hu et al., 2020) is

important in the domain of indoor localization (Yoon and Kim, 2022)
and human activity tracking. This metric essentially quantifies the
distance covered in a single stride and serves as an essential parameter
for accurately estimating an individual’s location within a confined
space. We utilized valley points in the position-time curve to estimate
the stride length. Valley points in the position-time curve typically
represent instances where the same foot hits the ground in successive
strides. The curve itself is derived from double-integrating the
acceleration data. This method is particularly beneficial in indoor
settings, where GPS data may be unreliable or unavailable.
Mathematically, the first step involves calculating the velocity V by
integrating the acceleration A:

V � ∫Adt

Following this, the position P is calculated by integrating
the velocity:

FIGURE 8
Kurtosis calculated from the Opportunity (left) and Extrasensory (right) datasets.
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P � ∫Vdt

We then identified valley points in this position-time curve.
These points are local minima in the curve and represent the
moments where a complete stride has occurred, that is, the same
foot has hit the ground twice. The time difference between successive
valley points is calculated as

tvalleyn−tvalleyn−1

This time difference Δt, when multiplied by a constant or
average speed, gives the stride length for that particular step. In
Figure 9, step lengths calculated for indoor and outdoor activities
can be seen intuitively.

3.5.3 Heading angles
The calculation of the heading angle (Javeed and Jalal, 2023;

Azmat et al., 2022) is an important component in indoor localization
(Jiang et al., 2023), as it provides the orientation or directional
information of an individual in relation to Earth’s magnetic North.
This orientation data is particularly for accurate path tracking and
route reconstruction within indoor environments, where GPS
signals are often weak. In our study, the heading angle, was
calculated using magnetometer data, which measures the Earth’s
magnetic field components along the x, y, and z-axes. Given that the
magnetometer can capture the Earth’s magnetic field, it serves as a
reliable sensor for determining orientation. To compute the heading
angle, we employed the arctangent function on the y and x
components of the magnetic field as per the following equation:

θ � arctan 2
My

Mx
( )

The resulting angle θ was calculated in radians and later
converted to degrees for easier interpretation and application.
This angle gives us an understanding of the individual’s
orientation at any given point in time, significantly enhancing
indoor localization systems. Supplementary Figure S3 displays the

heading angles for indoor and outdoor activities over the
Extrasensory dataset.

3.5.4 Mel-frequency cepstral coefficients (MFCCs)
The Mel-frequency cepstral coefficients (MFCCs) (González

et al., 2015; Hou et al., 2023) are widely used in various
applications. They serve as a compact representation of an
audio signal, capturing essential characteristics while ignoring
less informative variations. In the context of location
recognition, MFCCs can help distinguish between different
types of environments based on ambient noise or specific
sound patterns. For instance, an indoor location might
exhibit different MFCC patterns compared to an outdoor
location due to the presence of echoes, HVAC noise, or
human activity. MFCCs are computed through a series of
transformations. We already segmented the audio data in
section B. Each segment is passed through an FFT to obtain
its frequency spectrum. Then we applied a set of Mel-filters to
the frequency spectrum to capture the human perception of
pitch. The logarithm of the energies of these Mel-frequencies is
then taken, and a discrete cosine transform (DCT) is applied to
the log energies. The resulting coefficients are the MFCCs. The
equation for the kth MFCC (ck) can be summarized as

ck � ∑N
n�1

log MFn( ) cos πk n − 0.5( )
N

( )
whereMFn is the Mel-filtered energy of the nth frequency bin, andN
is the total number of Mel-filters. The MFFCs calculated for indoor
and outdoor activities over the Extrasensory dataset can be seen in
Supplementary Figure S4.

3.6 Feature optimization using Yeo-Johnson
power transformation

The Yeo-Johnson transformation (Xu et al., 2023) is a power
transformation technique aimed at making the data more closely

FIGURE 9
Step length calculated from indoor (left) and outdoor (right) activities over the Extrasensory dataset.
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follow a Gaussian distribution, thereby optimizing its characteristics for
further analysis. The transformation is similar to the Box-Cox
transformation, but it has the advantage of handling negative
numbers as well. We started by extracting various features from the
time-series data. Each of the features serves as a column in our feature
matrix. To apply the Yeo-Johnson transformation, we used the
PowerTransformer class from the sklearn. preprocessing package,
which internally fits the optimal λ for each feature based on the
likelihood maximization. After fitting, the transformation was
applied to each feature vector to create an optimized feature set.
Here it is important to note that after optimization, we got two
feature vectors, one for localization activities and the second for
locomotion activities. We plotted two feature vectors the original
versus optimized for Walking, Sitting, and Lying activities using only
a few features including (Alazeb et al., 2023), FFT-Min/Max, Shannon
entropy, and Kurtosis over the Extrasensory dataset in Figure 10. The
transformation is defined as

�yi �

yi + 1( )γ − 1[ ]
γ

, if yi ≥ 0 and γ ≠ 0,

log yi + 1( ), if yi ≥ 0 and γ � 0,

− −yi + 1( )γ − 1[ ]
γ

, if yi < 0 and γ ≠ 2,

− log yi + 1( ), if yi < 0 and γ � 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Here, yi is the ith observation, �yi is the transformed value, and λ

is the transformation parameter. It is important to mention that the
Yeo-Johnson transformation is often determined by optimizing a
likelihood function to find the best λ that minimizes the deviation
from normality. The objective function for this is usually the
negative log-likelihood, given by

L γ( ) � − log ∏n
i�1

∫ �yi

γ
( )⎛⎝ ⎞⎠

where ∫( �yi

γ) is the probability density function of the
transformed data.

3.7 Feature evaluation analysis and
comparisons

In order to validate and evaluate the robustness of the
proposed feature set, we compare the extracted features in this
study with other latest existing state-of-the-art methods. Initially,
we categorize all features into different sets, from the latest SOTA
systems (Bennasar et al., 2022; Tian et al., 2019; Muaaz et al.,
2023). The features are partitioned into 4 sets. Each set is
subjected to model training and validation. Our observations
indicate that our proposed feature set outperforms other sets in
performance, thereby validating the effectiveness, robustness,
and novelty of our proposed features in enhancing model
performance. The details of feature sets and their description
are given in Table 1.

4 Experimental setup and datasets

4.1 Experimental setup

The research experiments were carried out on a laptop
equipped with an Intel Core i5-8500U processor running at
3.10 GHz, 16.0 GB of RAM, and the Mac operating system.
The Jupyter Notebook was utilized as the primary
programming environment. We conducted comprehensive
experiments using two widely recognized benchmark datasets,
Opportunity and Extrasensory. The Opportunity dataset, a
renowned benchmark in the field, captures data from various
sensors. Another dataset used in our research is the Extrasensory
dataset. With its rich sensory data, it offers an extensive range of

FIGURE 10
(A) original feature vector; (B) optimized feature vector over the Extrasensory dataset.
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human locomotion and localization activity. The time-series data
was partitioned into approximately equal-length segments for the
purpose of cross-validation (Xu et al., 2022a). In each of the k
iterations, k − 1 segments were designated for training, and the
remaining segment was set aside for testing. This procedure was
repeated k times, guaranteeing that each segment served as a test
set once, the rest being used as training sets. Importantly, we
maintained a strict separation between training and test sets in
every iteration, preventing any overlap or data sharing
between them.

4.2 Dataset description

In the subsequent subsection, we provide comprehensive and
detailed descriptions of each dataset used in our study. Each dataset
is thoroughly introduced, highlighting its unique characteristics,
data sources, and collection methods.

4.2.1 The opportunity dataset
The Opportunity dataset (Lukowicz et al., 2010) stands as a

key benchmark in the domain of human activity recognition. It
was collected from 12 subjects participating in various daily
activities, ensuring a diverse representation. The dataset
captures data from different sensors, such as accelerometers,
gyroscopes, and magnetometers, strategically positioned on the
participants’ bodies and on certain daily-use objects. These
sensors record data during both dynamic and static human
activities. The dynamic activities include actions like walking,
jogging, and opening doors, while the static activities
encompass states like standing, sitting, and lying down.
Additionally, there are more complex activities, like making
coffee or preparing a sandwich, which involve interactions with
objects and the environment. In total, the Opportunity dataset
covers 17 different activities, ranging from basic locomotion
tasks to more intricate, multi-step actions. These activities were
recorded in diverse scenarios, both scripted and unscripted, to
ensure a comprehensive representation of real-world
conditions.

4.2.2 The extrasensory dataset
The Extrasensory dataset (Vaizman et al., 2017) is a robust

collection of data sourced from 60 distinct participants, each
uniquely identified by a UUID. These participants contributed
thousands of data samples. While the majority of these samples
were recorded at consistent 1-min intervals, there are instances
where time gaps exist. Each data sample encompasses
measurements derived from a variety of sensors present in the

participants’ personal smartphones and a provided smartwatch.
Furthermore, a large portion of these data points come furnished
with context labels, as self-reported by the individual
participants. In terms of device usage, the dataset includes
data from 34 iPhone users and 26 Android users. The gender
distribution is fairly balanced, with 34 females and 26 males.
Sensors integrated into the dataset include accelerometer,
gyroscope, magnetometer (He and Jin, 2008), GPS, audio,
compass, and smartwatch sensors. The dataset provides a
variety of human activities, including indoor, outdoor,
transportation, and locomotion.

5 Results and analysis

In this section, we performed different experiments for the
proposed system. The system is evaluated using different
matrices, including confusion matrix, precision, recall, F1 score
and receiver operating characteristic (ROC) curve. The detailed
discussion and analysis are described below.

5.1 Confusion matrices for locomotion
activities

We assessed our system’s performance for locomotion activities
across both datasets. Impressively, the system achieved a 97%
accuracy rate on the Opportunity dataset and 89% on the
Extrasensory dataset. Figures 11, 12 present the confusion
matrices for both datasets.

The system shows high performance in identifying stationary
activities. The system shows excellent performance in correctly
identifying Sitting and Standing, with accuracies of 97% and
99%, respectively. This suggests that the system is highly effective
in recognizing stationary activities. This capability is particularly
applicable in contexts like workplace ergonomics or patient
monitoring, where it is important to track the amount of time
spent sitting or standing.

5.1.1 Moderate performance in dynamic activities
The performance in recognizing Walking is moderate,

with an accuracy of 67%. The system seems to confuse
Walking with Lying Down in some cases, which might be
due to similar sensor patterns during slow walking or
transitional movements. This indicates a potential area
for improvement, especially in applications like fitness
tracking or elderly care, where accurate recognition of
walking is crucial.

TABLE 1 Comparison of the proposed feature extraction with the latest SOTA.

Source Features Accuracy (%)

Bennasar et al. (2022) Mean, standard deviation, root mean square, autocorrelation, permutation entropy, etc. 76

Tian et al. (2019) Mean, variance, skewness, kurtosis, signal magnitude area, minimum/maximum, interquartile range, etc. 83

Muaaz et al. (2023) Mean, variance, skewness, kurtosis, entropy, total energy, slope, etc. 88

Proposed Skewness, kurtosis, phase angle, linear prediction, auto-regression etc. 96
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5.1.2 Strong recognition of lying down
The system accurately identifies Lying Down in 96% of

the cases, indicating its effectiveness in distinguishing this
activity from others. This could be particularly relevant
in healthcare applications, like patient monitoring
systems, where detecting prolonged periods of lying down
is important.

5.1.3 Near-perfect recognition of all activities in the
opportunity dataset

The system shows near-perfect accuracy in recognizing all four
activities: Standing, Walking, lying, and sitting, with accuracies
of 100%, 98%, 96%, and 95% respectively. This high level of
accuracy is significant for applications that require precise
activity recognition, such as in advanced assistive technologies or
smart home environments.

5.1.4 Applicability across diverse scenarios
Given the high accuracy in all activities, this system can be

confidently applied to diverse real-world scenarios, from fitness
tracking to elderly care, where accurate activity recognition is
crucial. The system’s ability to distinguish between similar activities
(like lying and sitting) demonstrates its sophistication and reliability.

5.1.5 General observations
The higher overall mean accuracy in the Opportunity dataset

(97.25%) compared to the Extrasensory dataset (89.75%) could be
attributed to differences in sensor quality, data collection protocols,
or the inherent nature of the activities in each dataset. The system’s
performance on the Opportunity dataset suggests its potential
effectiveness in environments with structured activities, while the
Extrasensory dataset results indicate the need for refinement inmore
complex or less structured environments.

FIGURE 11
Confusion matrix: locomotion activities in the Extrasensory dataset.

FIGURE 12
Confusion matrix: locomotion activities in the Opportunity dataset.
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5.2 Precision, recall, and F1 score values for
locomotion activities

We continued to investigate in more depth the evaluation of our
system using precision, recall, and F1 score. Across both datasets, the
system demonstrated strong performance in all of these metrics.
Tables 2 and 3 showcase the system’s performance.

The performance evaluation of our system on the Extrasensory and
Opportunity datasets, as reflected in Tables 4 and 5, highlights its
strengths and areas for improvement in activity recognition. In the
Extrasensory dataset, the system exhibits high precision across all
activities, particularly for ‘Sitting’ and ‘Lying Down’, with scores of
0.97 and 0.96, respectively. This indicates a strong capability to correctly
identify these activities when they occur. However, there is a notable
discrepancy in the recall for ‘Walking’, at only 0.33, despite a perfect
precision score. This suggests that while the system is accurate when it
detects walking, it frequently misses walking instances. The overall
macro-average scores of 0.95 for precision and 0.81 for recall, with
an F1 score of 0.85, reflect competent performance but highlight the need
for improvements in consistently recognizing walking activities. In
contrast, the system’s performance on the Opportunity dataset is
exemplary, achieving near-perfect scores across all activities. Precision
and recall are both 1.00 for ‘Standing’, ‘Walking’, and ‘Sitting’, with ‘Lie’
closely following at 0.99 for both metrics. This exceptional performance,
encapsulated in macro-average scores of 0.99 for both precision and
recall, and an F1 score of 0.99, demonstrates the system’s high efficacy in
structured environments with clear activity definitions.

5.3 Receiver operating characteristic curves
for locomotion activities

To further investigate the system and stability of the system, we
evaluated the system using the roc curve. The receiver operating

characteristic (ROC) curve is a graphical representation used to
evaluate the performance of a classifier across various decision
thresholds. An important aspect of the ROC curve is the area
under the curve (AUC). The AUC provides a single-number
summary of the classifier’s performance. A value of 1 indicates
perfect classification, while a value of 0.5 suggests that the classifier’s
performance is no better than random guessing. In Supplementary
Figures S5, S6, the ROC curves for both datasets can be
observed clearly.

5.3.1 The Opportunity dataset
Standing (AUC = 1.00): The model’s perfect score in identifying

standing activities underscores its precision in environments such as
elderly care, where detecting prolonged stationary periods is crucial
for monitoring wellbeing and preventing health risks.

Walking (AUC = 0.98): The high AUC value for walking reflects
the model’s strong capability in accurately tracking walking
movements, which is particularly beneficial for applications in
fitness tracking and urban navigation systems.

Lying (AUC = 0.99): This near-perfect score indicates the
model’s effectiveness in recognizing lying down postures, an
essential feature for patient monitoring in healthcare settings,
especially for bedridden individuals.

Sitting (AUC = 1.00): The model’s flawless detection of sitting
activities is critical to workplace ergonomics and sedentary
lifestyle analysis, aiding in developing interventions for
prolonged inactivity.

TABLE 2 Precision, recall, and F1 score: locomotion activities in the
Extrasensory dataset.

Classes Precision Recall F1 score

Sitting 0.97 0.98 0.97

Walking 1.00 0.33 0.50

Lying Down 0.96 0.93 0.95

Standing 0.88 1.00 1.00

Macro-average 0.95 0.81 0.85

TABLE 3 Precision, recall and F1 score: locomotion activities in the
Opportunity dataset.

Classes Precision Recall F1 score

Standing 1.00 1.00 1.00

Walking 1.00 0.95 0.99

Lie 0.99 0.98 0.99

Sitting 1.00 1.00 1.00

Macro-average 0.99 0.98 0.99

TABLE 4 Precision, recall, and F1 Score: localization activities in the
Extrasensory dataset.

Classes Precision Recall F1 score

Indoors 1.00 1.00 1.00

At School 0.88 1.00 0.93

Location Home 1.00 1.00 1.00

Location Workplace 1.00 1.00 1.00

Outside 1.00 0.93 0.96

Macro-average 0.97 0.98 0.97

TABLE 5 Comparisons of the proposed system with other systems.

Methods Opportunity Extrasensory

Javeed, M. et al. (2023) 0.88 -

Vanijkachorn and Visytsak (2021) 0.88 -

Han, J. (2019) 0.87 -

Gil-Martin, et al. (2020b) 0.67 -

Gioanni et al. (2016) 0.74 -

Vaizman et al. (2018) - 0.83

Asim et al. (2020) - 0.87

Abduallah et al. (2022) - 0.87

Proposed system mean accuracy 0.97 0.96
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5.3.2 The extrasensory dataset
Sitting (AUC = 0.97): The high AUC for sitting activities

demonstrates the system’s reliability in identifying sedentary
behaviors, which is vital in office settings for promoting active
work habits.

Lying Down (AUC = 0.96): This score reflects the model’s
adeptness in detecting lying down positions, applicable in sleep
analysis and residential healthcare monitoring.

Walking (AUC = 0.67): The lower AUC in this category suggests
challenges in distinguishing walking from other movements in
complex environments, pointing to potential areas for
improvement in applications requiring precise motion tracking.

Standing (AUC = 0.99): The high accuracy in identifying
standing positions is crucial in varied contexts such as retail
analytics and customer behavior studies, where understanding
patterns of movement and pause can enhance service strategies.

5.4 Confusion matrix for localization
activities

We conducted experiments to recognize localization
activities. These experiments were conducted using the
extrasensory dataset, which offers a variety of human
localization activities. Initially, we generated a confusion
matrix, followed by an assessment of the system’s performance
using precision, recall, and the F1 score. Moreover, to assess the
system’s stability and effectiveness, we employed the ROC curve.
Each experiment is thoroughly discussed, and the resulting
outcomes are presented below.

In this experiment, we evaluate the system for localization
activities. We observed a good accuracy rate of 96%. The
confusion matrix is given in Figure 13.

The confusion matrix for the Extrasensory dataset’s localization
activities provides valuable insights into the system’s capability to

accurately distinguish between different environmental contexts.
Indoors (accuracy = 100%): The perfect accuracy in identifying
indoor activities showcases the model’s precision in environments
like homes, offices, or malls. This is crucial for applications such as
smart home automation, where accurate indoor localization can
trigger context-specific actions like adjusting lighting or
temperature. At School (accuracy = 90%): The high accuracy in
recognizing activities at school is significant for educational
applications, such as attendance tracking or student activity
monitoring. The confusion with other locations, although
minimal, suggests room for improvement in differentiating
between similar educational and other public environments.
Location Home (accuracy = 100%): Flawless detection of
activities at home points to the model’s effectiveness in
residential settings, crucial for applications like security systems
or elder care monitoring, where distinguishing home activities is
essential for providing personalized and situational services. Outside
(accuracy = 100%): The model’s ability to perfectly identify outdoor
activities is vital for location-based services, such as navigation aids
and outdoor fitness tracking. This can enhance user experiences in
applications that rely on outdoor localization. Location Workplace
(accuracy = 94%): The high accuracy in identifying workplace
activities is important for enterprise solutions, like workforce
management and safety compliance monitoring. The slight
confusion with other locations highlights the need for further
refinement to distinguish workplace activities from similar
environments with greater accuracy.

5.5 Precision, recall, and F1 score values for
localization activities

To check the performance of the system for localization
activities, we calculated the precision, recall, and F1 score.
In Table 4.

FIGURE 13
MFCCs feature.

Frontiers in Physiology frontiersin.org15

Khan et al. 10.3389/fphys.2024.1344887

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2024.1344887


5.6 Receiver operating characteristic curve
for localization activities

We plotted the ROC curve of localization activities to ensure
that the proposed system is well trained, accurate, and stable.
The system showed very impressive results in recognizing
location-based activities. The ROC curve can be examined in
Supplementary Figure S7.

5.7 Detailed performance analysis

In this subsection, we delve deeper into the performance metrics
across different datasets and activities, shedding light on the trade-
offs between accuracy and computational efficiency.

5.7.1 Locomotion activities
For the Opportunity dataset, as the number of iterations

increased from 5 to 50, the accuracy improved from 74.76% to
97.14%, while the computation time increased from 2.53 s to
19.49 s. For the Extrasensory dataset’s locomotion activity,
accuracy improved from 61.76% at 5 iterations to 89.14% at
50 iterations, with computation time increasing from 1.49 s to
14.49 s. It is evident that the model trained on the Opportunity
dataset achieved a relatively higher accuracy with more iterations
compared to the Extrasensory dataset. However, the
computational cost was also higher for the Opportunity
dataset. The time complexity and efficiency plot can be seen
in Supplementary Figure S8.

5.7.2 Localization activities
For the Extrasensory dataset’s localization activity, the accuracy

improved from 85.76% at 10 iterations to 95.61% at 50 iterations.
The corresponding computation time rose from 1.93 s to 11.90 s.
The model’s accuracy for localization showed a steady improvement
with increased iterations, and the computational cost was relatively
consistent, indicating efficient model performance. The time
complexity and efficiency plot for the localization activities can
be seen in Supplementary Figure S9.

5.8 Comparison between locomotion and
localization activities

For the Extrasensory dataset, the model’s performance for
localization activities was consistently higher in terms of accuracy
compared to locomotion activities, across the same number of
iterations. However, the computation time for localization was
slightly longer, indicating a trade-off between accuracy and
computational efficiency.

Finally, our system was subject to a comparative analysis against
other existing systems, revealing that our model excels in terms of
accuracy. Table 5 provides a comprehensive overview of the
comparisons between our system and state-of-the-art techniques.

6 Discussion

A system for recognizing human locomotion and location-
related activities is introduced in this work. This system utilizes
advanced noise filtering techniques, signal segmentation methods,
feature extraction processes, and hybrid models to effectively
identify both locomotion and localization activities. It is designed
to be versatile and can find applications in various real-world
scenarios such as sports, healthcare, security, location
recognition, and many more real-world applications. Our system,
while advanced, has certain limitations. The sensors we utilized,
especially GPS and IMU, have inherent challenges; GPS may not
always be accurate indoors or amidst tall urban structures, and IMUs
can drift over time. Second, our reliance on the Opportunity and
Extrasensory datasets, although reputable, does not capture all
human activity nuances, as evidenced by the challenge of
recognizing walking activities. Additionally, our experiments were
conducted on a specific laptop configuration. When transitioning to
real-world wearable devices, differing computational capabilities
might influence the system’s performance. Moving forward, we
plan to enhance our system by exploring advanced sensor fusion
techniques, allowing for more robust data integration from various
sensors. We also recognize the need to diversify our datasets and will
seek collaborations to gather more varied and balanced human
activity data. Importantly, to ensure our system’s efficacy on
wearable devices, we will explore optimizations customized to
devices with varied computational constraints, ensuring our HAR
system remains efficient and real-time in practical scenarios.

7 Conclusion

This study introduces a new and resilient system designed to
identify human locomotion and localization activities effectively.
The system was developed with a focus on utilizing advanced
techniques such as sensor data filtering, windowing, and
segmentation, along with innovative methods for feature
extraction. It is important to mention that our primary emphasis
was on recognizing localization activities, for which we employed
robust feature extraction techniques, including step count, step
length, and heading angle. In addition to manual feature
extraction, we introduced a hybrid model that harnesses both
machine learning and deep learning approaches to enhance
accuracy in recognition tasks. As a result, the presented system
demonstrates precise and efficient recognition of both locomotion
and localization activities.
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