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1 BACKGROUND

In this digital age, human activity recognition (HAR) plays an increasingly important role in almost
all aspects of life to improve people’s quality of life, such as auxiliary medical care, rehabilitation
technology, and interactive entertainment. Besides external sensing, sensor-based internal sensing
for HAR is also intensively studied. A large body of research involves recognizing various kinds of
everyday human activities, including walking, standing, jumping, and performing gestures. HAR
research relies on large amounts of data, which includes the collection of laboratory data that meet
in-house research goals, as well as the usage of external and public databases to verify models and
methods. Therefore, data collection is an essential part of our entire HAR research work, for which
we will detail this extensive progress.

Many public HAR datasets are available online, providing various sorts of collected data, some of
which have some similarities with our in-house data acquisition in terms of purpose, sensor selection,
or protocol design. For instance, the Opportunity benchmark database (Chavarriaga et al., 2013)
contains naturalistic daily living activities recorded with a large set of on-body sensors. The UniMiB
SHAR dataset (Micucci et al., 2017) includes 11,771 samples of both human activities and falls
divided into 17 fine-grained classes. The GaitAnalysisDataBase (Loose et al., 2020) contains 3D
walking kinematics and muscle activity data from healthy adults walking at normal, slow or fast pace
on the flat ground or at incremental speeds on a treadmill. The RealWorld dataset (Sztyler and
Stuckenschmidt, 2016) covers acceleration, GPS, gyroscope, light, magnetic field, and sound level
data of the activities climbing stairs down and up, jumping, lying, standing, sitting, running/jogging,
and walking of 15 subjects. The FORTH-TRACE dataset (Karagiannaki et al., 2016) is collected from
15 participants wearing five Shimmer wearable sensor nodes on the left/right wrist, the torso, the
right thigh, and the left ankle. The ENABL3S dataset (Hu et al., 2018) contains bilateral
electromyography (EMG) and joint and limb kinematics recorded from wearable sensors for ten
able-bodied individuals as they freely transitioned between sitting, standing, and five walking-related
activities.

In this article, we disclose our in-house collected sensor-based dataset, CSL-SHARE (Cognitive
Systems Lab Sensor-based Human Activity REcordings). Based on the improvement of the recording
plan and organization through the experience gathered from the pilot datasets’ collection of CSL17 (1
subject, 7 activities of daily living, 15 minutes) and CSL18 (4 subjects, 21 activities of daily living and
sports, 90 minutes), the CSL-SHARE dataset covers 21 types of activities of daily living and sports
from 20 subjects in a total time of 691 minutes, of which 363 minutes are segmented and annotated.
In this dataset, we used two triaxial accelerometers, two triaxial gyroscopes, four surface
electromyography (sEMG) sensors, one biaxial electrogoniometer, and one airborne microphone
integrated into a knee bandage, bringing the total number of channels to 19, as these sensors can
provide usable and reliable biosignals for HAR research, gait analysis, and health assessment
according to existing studies, such as Whittle, (1996), Rowe et al. (2000), Mathie et al. (2003),
Kwapisz et al. (2010), Rebelo et al. (2013), and Teague et al. (2016).We also tried to use a piezoelectric
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microphone and a force sensor for sensing the acoustic and
physical pressure signals from the knee during the acquisition.
Nevertheless, in subsequent analysis and research, we did not
have evidence to support their contribution to HAR research.
Therefore, we removed these two channels of signal from the
public dataset. In addition, although our two pilot datasets
mentioned above, CSL17 and CSL18, are not publicly available
due to the relatively smaller data volume, they can also be
obtained from us for scientific research purposes.

2 DATASET DESCRIPTION

2.1 Devices, Sensors, and Sensor
Placement
We chose the biosignalsplux Researcher Kit1 with the selected
various types of sensors supplied together. One hub from the kit
records biosignals from eight channels, each up to 16 bits,
simultaneously. Since we needed to record over 20 channels,
we connected 3 hubs via synchronization cables that connect the
hubs and synchronize all channels automatically between the
hubs at the beginning of each recording session, which ensured
the synchronicity during the entire recording sessions.

The sensor positioning on the right-leg-worn knee bandage
was decided in collaboration with kinesiologists of the Institute of
Sport and Sports Science at Karlsruhe Institute of Technology
based on their substantial research experience in knee kinematics
(Stetter et al., 2018; Stetter et al., 2019) to capture ambulation
activities. The CSL-SHARE sensor positions and their measured
muscles/body parts are listed as follows:

• Triaxial accelerometer 1 (upper): thigh, proximal ventral
• Triaxial accelerometer 2 (lower): shank, distal ventral
• Triaxial gyroscope 1 (upper): thigh, proximal ventral
• Triaxial gyroscope 2 (lower): shank, distal ventral
• EMG 1 (upper-front): musculus vastus medialis
• EMG 2 (lower-front): musculus tibialis anterior
• EMG 3 (upper-back): musculus biceps femoris
• EMG 4 (lower-back): musculus gastrocnemius
• Biaxial electrogoniometer (lateral): knee of the right leg
• Airborne microphone (lateral): knee of the right leg.

EMG and microphone signals were recorded with a sampling
rate of 1000 Hz and all other signals with 100 Hz. The low-
sampled channels at 100 Hz were up-sampled to 1000 Hz to be
synchronized and aligned with high-sampled channels. All
channels have a quantization resolution of 16 Bits.

2.2 Software for Data Acquisition
We developed a software called Activity Signal Kit (ASK) with a
Graphical User Interface (GUI) and multi-functionalities using the
driver library provided by biosignalsplux, as introduced in (Liu and
Schultz, 2018). ASK automatically connects and synchronizes several

recording hubs, then collects up to 24-channel sensor data from all
hubs simultaneously and continuously. All recorded data are archived
automatically in HDF5 files with the filename of dates and
timestamps for further research.

A protocol-for-pushbutton mechanism of segmentation and
annotation has been implemented in the ASK software, which
will be introduced in Section 2.3. Moreover, the baseline ASK
software also provides the functionalities of digital signal
processing, feature extraction, modeling, training, and
recognition by applying our in-house developed HMM-based
decoder BioKIT (Telaar et al., 2014).

2.3 Annotation and Segmentation
The task of segmentation in HAR research is to split a
relatively long sequence of activities into several segments
of single activity, while annotation is the process of labeling
each segment, such as “walk,” “run,” “stand-to-sit,” among
others. Segmentation, which can be performed manually
(Rebelo et al., 2013), semi-supervised Barbič et al. (2004),
or automatically (Guenterberg et al., 2009; Micucci et al.,
2017), is undoubtedly a prerequisite for annotation, and its
output will be input for digital signal processing and feature
extraction. Annotation, which can be performed directly after
each segmentation subtask, helps two follow-up operations:
training and evaluation.

In our research, we applied the pushbutton of the
biosignalsplux Research Kit in our proposed semi-automated
segmentation and annotation solution. In subsequent research,
the applicability of the semi-automated segmented data has been
verified for our research purpose during numerous experiments
(see Section 4), so we have been applying this mechanism to our
successively acquired datasets.

The so-called protocol-for-pushbutton mechanism of
segmentation and annotation has been implemented in the
ASK software (Liu and Schultz, 2018). When the
“segmentation and annotation” mode is switched on during
the data acquisition, a predefined activity sequence protocol
will be loaded into the software, which prompts the user to
perform the activities one after the other. Each activity is
displayed on the screen one-by-one while the user controls the
activity recording by pushing, holding, and releasing the
pushbutton. The user follows the instructions of the software
step-by-step. For example, the prompted activity states “walk,”
the user sees the instruction “Please hold the pushbutton and do:
walk.” The user prepares for it, then pushes the button and starts
to “walk.” She/he keeps holding the pushbutton while walking for
a duration at will, then releases the pushbutton to finish this
activity. With the release, the system displays the next activity
instruction, e.g., “stand-to-sit,” the process continues until the
predefined acquisition protocol is fully processed.

The ASK software records all timestamps/sample numbers of
each button push and button release during the data recording.
These data are archived in CSV files as segmentation and annotation
results for each activity. Since we synchronized all data at 1,000 Hz,
each sample represents data from1ms. For example, a line “sit, 3647,
6163” in a CSV file means that the activity segment labeled “sit” lasts
2,516 samples from the timestamp 3,647 to 6,162, which

1https://biosignalsplux.com/products/kits/researcher.html, accessed August
10, 2021
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corresponds to 2.516 seconds. The corresponding 2,516 samples
form one segment for training the activity model “sit,” or for the
recognition results evaluation. The protocol-for-pushbutton
mechanism was implemented to reduce the time and labor
costs of manual annotation. The resulting segmentations are
excellent and required little to no manual correction, and lay a
good foundation for subsequent research. Nevertheless, this
mechanism has some limitations:

• The mechanism can only be applied during acquisition and
is incapable of segmenting archived data

• Clear activity start-/endpoints need to be defined, which is
impossible in cases like field studies

• Activities requiring both hands are not possible due to
participants holding the pushbutton

• The pushbutton operation may consciously or
subconsciously affect the activity execution

• The participant forgetting to push or release the button
results in subsequent segmentation errors.

None of these limitations, except forgetting to release the
pushbutton, hold in a laboratory setting with clear instructions
and protocols. Hence, misapplication of the pushbutton was
addressed by real-time human monitoring of the incoming
sensor signals, including the pushbutton channel, during
acquisition. Additionally, a mobile phone video camera for
post verification and adjustments was used (see Section 2.4).

2.4 Post Verification
Although the “segmentation and annotation” mode of the ASK
software was switched on to segment and annotate the recorded

data efficiently, a mobile phone video camera was used in
addition to record the whole biosignal acquisition sessions to
manually correct the misoperation of pushing/holding/releasing
after the data recording.

After each recording event with one subject, the collected data
and the automatically generated segments with annotation
labels were examined thoroughly based on the video.
Segments with minor human-factor errors were corrected
by shifting the start-/endpoints forward/backward a short
distance manually, while segments with problems that
cannot be easily corrected were discarded, which is one of
the reasons leading to the slight divergence among the
activity occurrences in Table 1 (see Section 2.8 for
another reason). A script to automatically detect the
activity length outlier was also implemented to assist the
post verification. After finishing the correction and
verification, we deleted all recorded videos to preserve
privacy.

2.5 Activities and Protocols
The CSL-SHARE dataset was recorded in a controlled laboratory
environment at the Cognitive Systems Lab, University of
Bremen, comprised of 22 daily living and sports-based
activities. The acquisition protocols of CSL-SHARE
recording events were strictly and normatively designed.
The body steering angles and the number of steps related
to the activity parameters are restricted. Most of the
acquisition protocols contain only one activity. However,
there are two protocols with two activities and one
protocol with four activities because these activities can be
practically and logically recorded one after another in a
sequence, which also keeps the balance of the activity
occurrences. To follow the logical sequence of the
activities and the protocol-for-pushbutton segmentation
and annotation mechanism (see Section 2.3), the order of
the activities in these three multi-activity protocols must be
observed during recording.

Figure 1 illustrates the diagrammatic sketch of all
recording protocols, helping more intuitively understand
the recording procedure and activity details. The 22
activities and the 17 acquisition protocols are described as
follows:

• Protocol 1: walk (Figure 1A)
<push + hold> walk forward with three gait cycles, left foot
starts, i.e., left-right-left-right-left-right <release> → (turn
around in place) → . . .
20 repetitions (20 activities with 60 gait cycles) per subject.
Note: the “turn around in place” between two “walk”/“run”
activities is due to the limited space in our laboratory.

• Protocol 2: walk-curve-left (90°) (Figure 1B)
<push + hold> turn left 90° with three gait cycles, left foot
starts <release> → (turn left 90° in place) → . . .
20 repetitions (20 activities with 60 gait cycles) per subject.

• Protocol 3: spin-left-left-first (Figure 1C)
<push + hold> turn left 90° in one step, left foot starts
<release> → . . .

TABLE 1 | Statistics of segmented corpus in the CSL-SHARE dataset. The
minimum (Min), maximum (Max), mean, and standard deviation (std) values
are in seconds. #Seg: number of segments.

Activity Min Max Mean ± std #Seg Total

Sit 0.819 8.019 1.66 ± 0.58 389 00:10:47
Stand 0.809 6.959 1.64 ± 0.51 405 00:11:06
sit-to-stand 1.049 2.719 1.81 ± 0.32 389 00:11:45
stand-to-sit 1.129 3.729 1.92 ± 0.35 389 00:12:28
Walk 3.139 5.589 4.26 ± 0.44 400 00:28:23
walk-curve-left (90°) 2.899 6.449 4.34 ± 0.57 398 00:28:46
walk-curve-right (90°) 3.229 6.189 4.45 ± 0.50 393 00:29:08
walk-upstairs 3.789 6.729 4.76 ± 0.44 365 00:28:56
walk-downstairs 3.069 5.919 4.31 ± 0.50 364 00:26:09
spin-left-left-first 0.959 3.069 1.67 ± 0.30 380 00:10:33
spin-left-right-first 0.969 2.609 1.83 ± 0.29 420 00:12:48
spin-right-left-first 0.800 2.619 1.86 ± 0.24 401 00:12:26
spin-right-right-first 1.169 2.719 1.71 ± 0.22 400 00:11:26
Run 2.319 4.119 3.15 ± 0.33 400 00:21:01
V-cut-left-left-first 0.809 3.039 1.81 ± 0.33 399 00:12:03
V-cut-left-right-first 1.019 2.709 1.88 ± 0.29 378 00:11:50
V-cut-right-left-first 0.840 2.759 1.80 ± 0.34 400 00:11:59
V-cut-right-right-first 1.209 2.649 1.84 ± 0.28 378 00:11:36
shuffle-left 1.739 3.869 2.89 ± 0.29 380 00:18:18
shuffle-right 2.089 4.159 2.91 ± 0.33 374 00:18:10
jump-one-leg 0.830 2.949 1.69 ± 0.33 379 00:10:40
jump-two-leg 0.869 3.389 1.95 ± 0.39 380 00:12:20
Total 0.800 8.019 2.54 ± 1.58 8,561 06:02:39
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20 repetitions (20 activities with 20 gait cycles) per subject.
• Protocol 4: spin-left-right-first (Figure 1C)
<push + hold> turn left 90° in one step, right foot starts
<release> → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 5: walk-curve-right (90°) (Figure 1D)
<push + hold> turn right 90° with three gait cycles, left foot
starts <release> → (turn right 90° in place) → . . .
20 repetitions (20 activities with 60 gait cycles) per subject.

• Protocol 6: spin-right-left-first (Figure 1E)
<push + hold> turn right 90° in one step, left foot starts
<release> → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 7: spin-right-right-first (Figure 1E)
<push + hold> turn right 90° in one step, right foot starts
<release> → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 8: run (Figure 1A)
<push + hold> go forward at fast speed with three gait cycles,
left foot starts <release> → (turn around in place) → . . .
20 repetitions (20 activities with 60 gait cycles) per subject.

• Protocol 9: V-cut-left-left-first (30°) (Figure 1F)
<push + hold> turn 30° left forward in one step at jogging
speed, left foot starts <release> → (return backward to the
start point with three steps, left foot starts) → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 10: V-cut-left-right-first (30°) (Figure 1F)
<push + hold> turn 30° left forward in one step at jogging
speed, right foot starts <release> → (return backward to the
start point with three steps, left foot starts) → . . .

20 repetitions (20 activities with 20 gait cycles) per subject.
• Protocol 11: V-cut-right-left-first (30°) (Figure 1G)
<push + hold> turn 30° right forward in one step at jogging
speed, left foot starts <release> → (return backward to the
start point with three steps, left foot starts) → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 12: V-cut-right-right-first (30°) (Figure 1G)
<push + hold> turn 30° right forward in one step at jogging
speed, right foot starts <release> → (return backward to the
start point with three steps, left foot starts) → . . .
20 repetitions (20 activities with 20 gait cycles) per subject.

• Protocol 13: shuffle-left + shuffle-right (Figure 1H)
<push + hold> move leftward with three lateral gaits cycles,
left foot starts, right foot follows <release>→ <push + hold>
move rightward with three lateral gaits cycles, right foot
starts, left foot follows <release> → . . .
20 repetitions (40 activities with 120 gait cycles) per subject.

• Protocol 14: sit + sit-to-stand + stand + stand-to-sit
(Figure 1I)
<push + hold> sit <release> → <push + hold> stand up
<release> → <push + hold> stand <release> → <push +
hold> sit down <release> → . . .
20 repetitions (80 activities) per subject.

• Protocol 15: jump-one-leg (Figure 1J)
<push + hold> squat, then jump upwards using the
bandaged right leg, land in <release> → . . .
20 repetitions (20 activities) per subject.

• Protocol 16: jump-two-leg (Figure 1J)
<push + hold> squat, then jump upwards using both legs,
land in <release> → . . .

FIGURE 1 | Diagrammatic sketch of all recording protocols. Sub-diagrams (A–G) are from the top view; Sub-diagram H is from the front view; Sub-diagrams (I–K)
are from the side view. Blue arrows: activities or gaits; I, II, III: gait cycles; yellow arrows: turn around (180°) in place; gray arrows: turn left/right (90°) in place; green arrows:
return backward to the start point. (A) Protocol 1 and Protocol 8:①walk/run. (B) Protocol 2:①walk-curve-left (90°). (C) Protocol 3 and Protocol 4:① spin-left-left-first/
spin-left-right-first. (D) Protocol 5: ① walk-curve-right (90°). (E) Protocol 6 and Protocol 7: ① spin-right-left-first/spin-right-right-first. (F) Protocol 9 and Protocol
10: ① V-cut-left-left-first/V-cut-left-right-first. (G) Protocol 11 and 12: ① V-cut-right-left-first/V-cut-right-right-first. (H) Protocol 13:① shuffle-left; ② shuffle-right. (I)
Protocol 14: ① sit; ② sit-to-stand; ③ stand; ④ stand-to-sit; purple: a chair. (J) Protocol 15 and Protocol 16: ① jump-two-leg/jump-one-leg. (K) Protocol 17: ①
walk-upstairs; ② walk-downstairs; brown: stairs.
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20 repetitions (20 activities) per subject.
• Protocol 17: walk-upstairs + walk-downstairs (Figure 1K)
<push + hold> go up six stairs with three gait cycles, left foot
starts <release>→ (turn around in place) → <push + hold>
go down six stairs with three gait cycles, left foot starts
<release> → (turn around in place) → . . .
20 repetitions (40 activities with 120 gait cycles) per subject.

The number of repetitions/to-record activities per each protocol
is a pre-designed plan. In the post verification (see Section 2.4), a
few non-conformity and erroneous segments were removed.

The meaning of most of the activities in the CSL-SHARE
dataset can be self-explanatory from their names or the
description in the protocols. The “spin-left/right” activity can
be understood as the “left/right face” action in the army (but in
daily situations, not so stressful as in military training). The “V-
cut” activity is a step in which the body rotation (instead of the
directional change) takes place, as shown in Figures 1F, G.

Some activities in the CSL-SHARE dataset are the subdivision
of original activities. For example, “spin-left” is divided into
“spin-left-left-first” and “spin-left-right-first,” denoting which
foot should be moved first. Similarly, “spin-right,” “V-cut-left,”
and “V-cut-right” are also divided into two activities in regard to
the first-moved foot. The activities mentioned above are
subdivided because they only involve one gait, and we only
use the sensors placed on the right-leg-worn bandage.
Therefore, the “left foot first” and “right foot first” of these
activities will lead to very different signal patterns. On the
contrary, for activities involving multiple (three) steps/gait
cycles, such as “walk,” “walk-curve left/right,” “walk-upstairs,”
“walk-downstairs,” “run,” and “shuffle-left/right,” we did not
further subdivide them. Instead, we restricted in the protocols
the number of gaits for each segment of these activities to three
and defined the left foot as the start.

2.6 Subjects
Twenty subjects without any gait impairments, five female
and fifteen male, aged between 23 and 43 (30.5 ± 5.8),
participated in the data collection events, among which
one subject had knee inflammation and could not perform
certain activities. Each subject’s participation time is
approximately 2 h, including announcement and
precautions, questions and answers, equipment wearing
and adjusting, software preparation and test-running,
acquisition following all protocols, taking breaks, and
equipment release.

2.7 Privacy Preservation and Data Security
All subjects signed a written informed consent form, and the
study was conducted in accordance with Helsinki’s WMA
(World Medical Association) Declaration (Association,
2013). According to the consent form, we only kept the
wearable sensor data pseudonymized and did not leave
any identification information of the participants. The
to-share CSL-SHARE dataset is available in an
anonymized form. As mentioned in Section 2.4, we used
videos to verify the segmentation and annotation, and all

videos have been deleted after the post verification to protect
privacy.

In addition, the consent form stipulates that the use of the data is
limited to non-commercial research purposes, and the data users
guarantee not to attempt to identify the participating persons.
Furthermore, the data users guarantee to pass on the data (or
data derived from it) only to third parties who are bound by the
same rules of use (for non-commercial research purposes, no
identification attempts, restricted disclosure). Data users who
violate the usage regulation mentioned above will bear the legal
consequences themselves, where the dataset publisher takes no
responsibility.

2.8 Data Format
We provide our CSL-SHARE dataset in an anonymized form
in the following directory structure and file format: The root
directory contains a total of 20 sub-directories with order
numbers 1–20, representing the data of 20 subjects. In each
subdirectory, there are 34 files. The seventeen.H5 files,
named by the order number of protocols, use HDF5
format to save the raw recorded data of seventeen
protocols, while the seventeen.CSV files are the
corresponding annotation results.

Each row in the .H5 files is according to the following sensor
order: EMG 1, EMG 2, EMG 3, EMG 4, airborne microphone,
accelerometer upper X, accelerometer upper Y, accelerometer upper
Z, electrogoniometer X, accelerometer lower X, accelerometer lower
Y, accelerometer lower Z, electrogoniometer Y, gyroscope upper X,
gyroscope upper Y, gyroscope upper Z, gyroscope lower X,
gyroscope lower Y, gyroscope lower Z.

There are three sub-directories/sub-datasets with exceptions:

• Sub-directory 2: The 02.CSV and 05.CSV files are different
from protocols 2 and 5: the labels are mixed with each other.
Subject 2 performed wrong angles when turning the body
between activities. We were not aware of it during the data
collection process, and the problem was first discovered
through the video in the post-verification. However, this
mixture affects neither the integrity of the dataset nor the
number of times each activity should occur

• Sub-directory 11: Protocol 13 is divided into two parts due
to the device communication breaking

• Sub-directory 16: Not all activities were performed due to
the subject’s knee inflammation, which is one of the reasons
leading to the slight divergence among the activity
occurrences in Table 1 (see Section 2.4 for another reason).

3 STATISTICAL ANALYSIS

The 22-activity CSL-SHARE dataset contains 11.52 hours of data
(of which 6.03 hours have been segmented and annotated) from
20 subjects, 5 female and 15 male. Table 1 gives the number of
activity segments, the total effective length over all segments, and
the minimal/maximal/mean length of the 22 activities.

By analyzing the duration distribution of each activity of all
subjects in histograms, we find that all activities’ duration over all
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segments approximately accords with the normal distribution.
The distribution of the activities “sit” and “stand” deviates
slightly, as they can last arbitrarily long.

4 CONCLUSION

We share our in-house collected dataset CSL-SHARE (Cognitive
Systems Lab Sensor-based Human Activity REcordings) in this
article and introduce its recording procedure and technical
details. This 19-channel 22-activity 20-subject dataset applies
two triaxial accelerometers, two triaxial gyroscopes, four EMG
sensors, one biaxial electrogoniometer, and one airborne
microphone with sampling rates up to 1000 Hz and uses a
knee bandage as a novel wearable sensor carrier. Six-hour data
of a totally 11.52-h recording are well segmented, annotated, and
post-verified. The reliability and applicability of the CSL-SHARE
dataset and its previous pilot data collection can be observed
through literature in various research aspects here and there, such
as HAR research pipeline (Liu and Schultz, 2018), real-time end-
to-end HAR system (Liu and Schultz, 2019), visualized
verification of multimodal feature extraction (Barandas et al.,
2020), feature dimensionality study (Hartmann et al., 2020;
Hartmann et al., 2021), human activity modeling (Liu et al.,
2021), among others.

To the best of our knowledge, CSL-SHARE is the first publicly
available dataset recorded with sensors integrated into a knee
bandage and one of the most comprehensive HAR datasets with
an ample number of sensors, activities, and subjects, as well as
complete synchronization, segmentation, and annotation.

Standing on the dataset robustness, we publish the CSL-
SHARE dataset as an open-source sensor-based biosignals
dataset for HAR, hoping to contribute research materials to
the researchers in the same or similar fields.
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