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Taxonomy and Real-Time Classification of
Artifacts During Biosignal Acquisition:
A Starter Study and Dataset of ECG
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Abstract—This article investigates electrocardiogram
(ECG) acquisition artifacts often occurring in experiments
due to human negligence or environmental influences,
such as electrode detachment, misuse of electrodes, and
unanticipated magnetic field interference, which are not
easily noticeable by humans or software during acquisition.
Such artifacts usually result in useless and irreparable
signals; therefore, it would be a great help to research if
the problems are detected during the acquisition process
to alert experimenters instantly. We put forward a taxonomy
of real-time artifacts during ECG acquisition, provide the
simulation methods of each category, collect and share a
10-subject data corpus, and investigate machine learning
(ML) solutions with a proposal of appropriate handcrafted features that reach an offline recognition rate of 90.89% in
a five-best-output person-independent (PI) leave-one-out cross-validation (LOOCV). We also preliminarily validate the
real-time applicability of our approach.

Index Terms— Artifact, biosignal, electrocardiogram (ECG), electrocardiography, pattern recognition, real-time system,
signal quality.
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I. INTRODUCTION

B IOSIGNALS are increasingly helping human life. In
addition to medical applications, biosignals are widely

studied and used in areas such as sports assistance, interactive
interfaces, smart homes, education, and entertainment. The
quality of the obtained signals largely influences various
subsequent research and experiments.

Regarding detecting artifacts in real time during the biosig-
nal acquisition process, images and videos, categorized as
optical biosignals in biomedical research, can be observed
by the naked eye to judge whether they contain artifacts.
Similarly, for audios, which can be categorized as acoustic
biosignals, it is feasible to check for errors or noise dur-
ing acquisition from signal observation and accompanying
listening.

Optical and acoustic biosignals are mainly recorded
by external sensing techniques. In contrast, internal
sensing technologies, many of which are associated with
wearables, use specific sensors to receive electrical, magnetic,
mechanical/kinematic, thermal, and chemical biosignals.
Artifacts of electrical biosignals, such as in electrocardiogram
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(ECG), electromyogram (EMG), electroencephalogram
(EEG), electrocorticogram (ECoG), electrooculogram
(EOG), electroretinogram (ERG) electrogastrogram (EGG),
electrovaginogram (EVG), electrohysterogram (EHG), and
electrodermal activity (EDA), among others, are usually
less readable on real-time signal visualization, especially at
high sampling rates, meaning that even professionals may
not be able to accurately and timely determine from the
waveforms of the signals being acquired whether they are
of good quality or subject to some interference. Such a
situation is exacerbated by the fact that many research tasks
involve multimodal biosignal acquisition, that is, simultaneous
collection of multiple sensor types (e.g., ECG + EMG),
quantities (e.g., four EMGs), and channels (e.g., X -, Y -,
and Z -axes of the accelerometer), similar to many human
activity data collection tasks [1], [2]. Clear visualization may
not be possible when recording a large number of channels
at the same time. Even if the graphics technique works,
the simultaneous observation of several or even dozens of
channels by the collector is challenging. Due to the real-time,
continuous, and long-term nature of biosignal visualization,
increasing the labor of observation or the personnel number
is not feasible to ensure a high-qualitative data corpus.
Some researchers have experienced the pain of discovering
signal problems in some channels during post-processing
that can undo hours of data acquisition effort and put the
human, material, and time resources in vain. Not to mention
that many users may not be senior signal experts—data
acquisition work often occurs at the introductory stage
for young scholars. Aiming to provide solutions, real-time
intervention in the biosignal acquisition process with the help
of machine learning (ML) has become this article’s research
topic.

Artifacts/errors/problems/noises in biosignal acquisition
arise for various sorts of reasons, two of which are quickly
addressed or widely researched and not the subject of this
work:

1) From hardware, device, and transmission perspectives,
errors caused by an insufficient power supply, damaged
devices, or unstable wired/wireless transmission, among
others, are fatal and cannot be fixed later. Acquisition
software and software development kits (SDKs) can alert
and avoid such issues during the acquisition by detecting
lost connections or receiving error codes.

2) Some unavoidable signal noise/artifacts within reason-
able limits are related to device specifications, acqui-
sition surroundings, and biological conditions. Even if
they are known to exist, nothing can be done dur-
ing acquisition. Such problems can be mended at the
post-processing stage, such as correction [3], [4], [5],
rectification [6], [7], and denoising [8], [9].

This article investigates biosignal acquisition artifacts fre-
quently occurring in experiments due to human negligence
or environmental influences, such as electrode detachment,
misuse of electrodes, unanticipated magnetic field interference,
and signal distortion by human movements, which are not eas-
ily noticeable by experimenters or software during acquisition
but can be discovered by ML in real time. Such artifacts

usually result in useless and irreparable signals; therefore,
it would be a great help to research if the problems are
detected during the acquisition process, and the experimenters
are alerted to them. This work also contributes to diagnos-
ing and tracking medical metrics as a practical aid. Take
the continuous positive airway pressure (CPAP) treatment of
breathing problems as an example. In many countries, the
patient needs to periodically wear biosensors, including ECG,
respiration, and blood volume pulse (BVP) sensors, among
others, during one night of sleep at home, and the measured
signals are returned to the clinic for analysis. Pulling on cables
or tangling the CPAP tubing and sensor cables due to sleeping
position changes often results in invalid data collection of
detachment or strong noise. Thus, the patient must return to
the clinic to wear the sensors again for a second acquisition.
If, with the patient’s permission, some audible/vibration alerts
are generated for the user when a critical signal error, such
as a dropped electrode, is detected, a significant saving of
medical resources (cost, time, and labor) and enhancement of
convenience is expected.

We use ECG, a very common biosignal, as the initiating
study object of the artifacts during biosignal acquisition. The
overall research framework of taxonomy and real-time clas-
sification of ECG acquisition artifacts can provide a superior
reference value for researching other bioelectrical signals. It
can also radiate to more biosignal types, such as inertial biosig-
nals from accelerometers, gyroscopes, or magnetometers. In
this work, we

1) propose a taxonomy of ECG acquisition artifacts and
their simulation schemes.

2) collect a 10-subject 199.82-min data corpus and make it
freely available;

3) investigate lightweight ML models, architectures, hand-
crafted features, and parameter configurations to achieve
offline artifact detection and classification; and

4) validate the method’s real-time applicability.
Our pilot work’s future development can serve as a fea-

sible plug-and-play aid. Not only can the data collector be
immediately alerted when an artifact occurs, but also the types
of artifacts that are likely to occur can be prompted to help
the experimenter efficiently examine the experimental setup,
which facilitates the acquisition of biosignals, as the graphical
abstract shows. Although there have been previous works to
assess the quality of biosignals, such as ECG [10], [11], EMG
[12], [13], EEG [14], [15], and photoplethysmogram (PPG)
[16], [17], or to search for normal patterns and anomalies [18],
[19], to our knowledge, this work is the first to investigate the
artifact detection and classification during biosignal acquisi-
tion with a taxonomy proposal and ML solutions.

II. TAXONOMY AND SIMULATION

A. Taxonomy of Real-Time Artifacts During
Electrocardiography

Leaving aside the easily solvable underlying device prob-
lems or the extensively studied allowable noise, artifacts dur-
ing signal acquisition can be divided into two main categories:
technical artifacts caused by the equipment (e.g., electrodes
and cables) and biological artifacts generated by the user [20].
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TABLE I
TAXONOMY OF REAL-TIME ARTIFACTS DURING ECG ACQUISITION. IN

EACH ABBREVIATION, THE FIRST TERM INDICATES THE ARTIFACT

CATEGORY (TECHNICAL OR BIOLOGICAL ARTIFACT); THE SECOND

POINTS OUT WHERE THE PROBLEM TO BE EXAMINED LIES;
THE THIRD SPECIFIES FURTHER DETAILS

The taxonomy, as listed in Table I, covers the majority
of common oversights and errors that a data collector may
encounter during biosignal acquisition.

The ECG artifacts defined and their simulation schemes in
this article were determined through iterative discussions, tests,
and experiments among an international group of experienced
biomedical research experts, biosignal instrumentation profes-
sors, and senior technical staff of well-known wearable sensor
companies (see Acknowledgment).

B. Simulation of Artifacts
Detachment can occur between the electrodes and the skin

or between the cables and the electrodes. Signal visualization
does not show noticeable differences between these two cases.
TA-D-* is simulated by detaching the relevant electrodes from
the skin.

In order to simulate the case of insufficient gel (TA-E-IG),
we divided the electrode covering film into several equal parts
in a scalloped manner and adhered them partially back to the
electrodes. Overall, the visualization of the masked signal is
close to the original signal, and even many are smoother as if
a low-pass filter is applied, especially when the masked part
is no larger than 50% (see Fig. 1). We masked up to 87.5%
(7/8) of the electrodes since more masking would result in
difficulty in affixing the electrodes to the skin. In different

Fig. 1. Example of masking electrodes to simulate the gel deficiency
situation. Top: standard electrode; middle: 25% of the gel is covered by
a right-angle sector; bottom: 50% of the gel is covered by two right-angle
sectors.

subjects’ data recordings, the electrodes were shaded with
25%, 50%, 75%, or 87.5% to simulate different gel lack
situations (the masking rate is recorded in the file name).
We have tested masking each one, each pair, or all of the
positive, negative, and grounding electrodes in the preliminary
stage, and they caused no significant difference in the signal
pattern. Therefore, we only acquired the signals of the masked
grounding electrode.

The overused electrodes’ situation (TA-E-O) was always
simulated after each participant’s all recording sessions were
finished (about 1.5 h). Even so, the electrodes were repeatedly
adhered to and detached from fibers as well as the subject’s
skin many times for about 20 min to make them almost
unstuck.

Magnetic field interference (TA-I) was simulated by subjects
holding an energized laptop power transformer at about a fist’s
distance from the heart.

The left/right sternocleidomastoid muscles (when head turn-
ing to the opposite direction) and the quadriceps muscle (when
seated) were used to simulate wrongly placing the positive,
negative, or grounding electrodes to active muscles (TA-M-*).
When simulating the positive electrode sensing active muscles,
the electrode was placed on the left sternocleidomastoid mus-
cle, and the subject kept the head turned to the right and vice
versa. To simulate both the positive and the negative electrodes
connecting to active muscles simultaneously, the subject kept
the head tilted upward to activate the sternocleidomastoid
muscles on both sides.

TA-S-* may seem at first glance to be classified as biolog-
ical artifacts since they are produced by human motions. In
fact, the essence of the artifacts they cause is the electrodes’
drift. In nomenclature, we use shifting (S) instead of drifting to
avoid overlapping with the abbreviation of detachment, where
S can also be seen as an abbreviation for sports. During signal
acquisition, the subject performed the relevant activities at a
normal tempo.

C. Impact of Directly Applying Protocol-Based Physical
Events as Artifact Classes for ML

In this work, we simulated and modeled artifacts by physical
events instead of signal patterns. The advantage is obvious:
the outputs are supported in the possible artifact explanation
to the user. Nonetheless, using a physical event nomenclature
as ML classes instead of grouping similar patterns weakens
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the accuracy due to the confusion of some classes. Applying
the N -best outputs primitively addressed the problem (see
Section IV-G).

Alternatively, we also discussed conducting secondary label-
ing regarding signal patterns in time and frequency domains,
summarizing up to 10 classes, such as baseline drift and
significant high-frequency noise. Such categorization cannot
correspond to an actual acquisition protocol simulated by
a specific physical event; moreover, a recorded signal from
physical events may be applied for the model training of
multiple signal patterns, for example, by weighting. Better
readability and accuracy for pattern recognition are appar-
ent advantages of such an alternative ML process, whereas
the classified patterns may lack daily interpretability—what
should we suggest to the experimenter for setup adjustment
by a baseline drift? If the advice is too much or too general,
the work almost degenerates to artifact detection instead of
the classification and suggestion that we pursue. In any case,
it is another topic to be studied, not related to the taxonomy
directly by physical event acquisition in this work.

III. EXPERIMENTAL DEVICE AND DATASET

A. Biosignal Acquisition Device
We applied biosignalsplux Researcher Kit1 as the biosignal

recording device that provides expandable solutions of hot-
swappable sensors. The biosignalsplux hub can simultaneously
acquire up to eight channels of signals from arbitrarily selected
sensors. In this work, we used one hub channel of the eight
to obtain ECG signals at a sampling rate of 1000 Hz and a
quantization level of 16 bits. The other seven channel inter-
faces provide a prospect for future research of multichannel
and multimodal biosignal acquisition artifact detection and
classification.

The particular model and manufacturer of the equipment
may make this article’s results not definitely universal. How-
ever, following the proposed taxonomy, acquisition process,
and experimental procedures, our results should be repli-
cated similarly on other equipment models and facilitate their
respective users.

B. Protocol
Each class of TA-containing signals from each subject was

acquired continuously for 30 s, while each BA was captured
in two sessions of 15 s each, limited by human physiology.
Besides, standard ECG signals (STD) were acquired twice
from each subject, for 60 s each, once sitting and once
standing.

It is impossible to record a signal piece for 15/30/60 s pre-
cisely. In order to facilitate the subsequent signal processing,
the subject and the device were put into the state specified
in the protocol before the signal acquisition started so that
signals in all data files were usable from frame 0 onward.
Each recording session took longer than the time specified
in protocol (15/30/60 s). Our experiments were run based on
each signal truncated according to the duration in the protocol
(15/30/60 s).

1https://www.pluxbiosignals.com/products/researcher-kit (accessed June
25, 2023)

C. Subjects and Ethic
A total of 10 subjects without any known heart-related

diseases, four females and six males, aged between 22 and 46
(28.0 Â± 6.9), participated in the data collection events. Each
subject’s participation time was approximately 2 h, consisting
of announcements and precautions, questions and answers,
equipment donning and adjustment, software preparation and
test runs, data collection along all categories in the protocol,
breaks, and device release.

All subjects signed a written informed consent form, and
the study was conducted in accordance with Helsinki’s World
Medical Association (WMA) Declaration [21]. According to
the consent form, we only kept the wearable sensor data
pseudonymized and did not leave any identification informa-
tion of the participants. The dataset is shared in an anonymized
form.

D. Dataset
The 10-subject h5-formatted dataset we recorded and shared

contains 199.82-min (3 h 19 min 49 s) data, of which
163.50 min are truncated according to the protocol described
in Section III-B in files of 15, 30, or 60 s as an accompanying
set. Each file name contains the artifact abbreviation (see
Table I) of the corresponding signals, serving as a label for
ground truth.

Some subjects’ certain acquisitions contain extra sessions,
which we also keep in the dataset in the spirit of using
academic resources wisely. It causes a slight imbalance in the
data amount between classes.

IV. OFFLINE STUDY, EVALUATION, AND DISCUSSION

A. ML Models and Leave-One-Out Cross-Validation
As a proof-of-concept, up-to-date experiments adopted three

non-deep ML models, decision tree (DT), support vector
machine (SVM), and random forest (RF), with window-based
data training and recognition. Although the current models
and configurations have achieved acceptable results, sequential
modeling or deep learning is expected to improve the recog-
nition rate further, which is one of the subsequent research
topics.

This article uses most of the default settings of the three
ML models in the Python package scikit-learn and the fol-
lowing specific parameters based on the validation of iterative
experimental parameter tuning.

1) DT: random_state = 0.
2) SVM: Radial basis function (RBF) kernel with c =

80 and gamma = 250.
3) RF: min_samples_spli t = 2 and n_estimators = 25.
All experiments have been conducted using leave-one-out

cross-validation (LOOCV) for person-independent (PI) train-
ing (see Section IV-F) to comprehensively validate offline PI
models, whose overall recognition rate is computed as a macro
average by accumulating 10-fold results.

B. Artifact Classes to Recognize
Biological artifacts due to the effect of physical activity

on the signal influence the data quality, which is identifiable
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by experienced evaluators and can lead to misinterpretations
in computer-assisted analysis (e.g., slow eye movements in
frontal EEG) [20]; however, on the one hand, they are difficult
to avoid, and on the other hand, the resulting signal is still
maximally usable by subsequent studies. For example, during
sports exercise, non-routine breathing (see BA-R-* in Table I)
can affect ECG, which does not mean that the subject should
change their exercise habits to accommodate the equipment or
even cancel certain sessions.

Although we also simulated and acquired three types of
biological artifacts in our dataset, they were difficult to be
identified individually and significantly interfered with the
effective identification of standard signals and technical arti-
facts with the existing models. Since biological artifacts are not
utterly “wrong” signals and, even being detected in real time,
cannot be effectively avoided during the acquisition in most
cases [20], the real-time artifact detection and classification
proposed in this article do not include biological artifacts for
the moment. We still include the acquisition signals of all
subjects’ three biological artifacts in the shared dataset to seek
a better classification in the subsequent work, for example,
applying sequential or deep modeling.

The seven TA-M-* and six TA-S-* artifacts exhibit strong
confounding within their respective parent categories while
also degrading the classification of STDs and other arti-
facts. Therefore, in this article’s proof-of-concept experiments,
we grouped these artifacts as TA-M and TA-S, respectively,
which is acceptable for reporting artifacts to the experimenter.
The tentative scheme should not be the final solution in the
future, as some essential differences can still be detected in
the signal visualization.

C. Feature Extraction and Selection
Since this proof-of-concept article involves non-deep learn-

ing, we extracted features manually utilizing the open-source
time-series feature extraction library (TSFEL) [22]. It has been
shown in the recent literature that handcrafted features do not
necessarily perform worse than deep neural representations
in biosignal-based pattern recognition research, for example,
human activity recognition [23].

TSFEL offers 60 common and exclusive features. The real-
time nature of this study’s final application and the planning
for future multichannel/multimodal synchronous processing
helped us to narrow down the feature selection at the outset.
Following the summaries in [18] and [24], we retained only
30 features with low computational consumption in the tempo-
ral, statistical, and spectral domains for our initial experiments.

Of particular concern is that using feature sets in the tem-
poral or spectral domain alone, or mixing them with features
in the statistical domain, exhibited poor overall recognition
rates. Both temporal and spectral domain features have shone
in various biosignal research areas, but most research tasks are
based on (as far as possible) correctly acquired signals con-
taining advantageous time (e.g., zero-crossings and slop) and
frequency (e.g., periodicity) characteristics. On the contrary,
most signals studied in this article are exceptional because
they are irrational and do not conform to everyday patterns,

which may explain the powerlessness of features in temporal
and spectral domains in the pilot study.

More desirable results were achieved with statistical domain
features alone. The results of the forward or backward greedy
selection of 11 statistical domain features, that is, mean,
median, standard deviation, mean absolute deviation, variance,
root-mean-square, max, min, interquartile range, kurtosis, and
skewness [18], cannot decisively distinguish which features are
more effective or more redundant. Considering that they are
all computationally less expensive, in this article’s preliminary
experiments, we adopt the entire 11 statistical domain features.

D. Window Length and Overlap Ratio
Window length and overlap ratio are two critical variables

in this study. A standard ECG signal has typical waveforms
within a reasonable duration. However, various artifacts do not
necessarily have the correct ECG waveform and the expected
typical duration. Therefore, we do not hypothesize whether a
window of 1 or more typical ECG lengths is advantageous for
identifying all types of artifacts. In the absence of any ref-
erenceable literature on real-time ECG artifact classification,
we have at least three reasonable considerations:

1) A window should last at least one typical ECG cycle
duration because the standard ECG is one of the classes
to be recognized.

2) If performing better, the window length can be longer
than that of a typical biosignal-based research task. For
example, an online model notifying the user 10 s after
an artifact occurs is totally acceptable.

3) Applying solely statistical domain features (see
Section IV-C) relaxes the limit of windowing the signal,
that is, the window can start from any position of an
ECG cycle.

Greedy selections were executed with different ML models
and parameter settings. To identify the best combinations,
we performed joint selection experiments using heatmaps with
1–10 s of window lengths in a step of 0.5 s and 0%–90%
overlap ratios in a step of 10%, as Fig. 2 exemplifies the best-
performing SVM model among all three ML models.

No obvious trend on the impact of window length or overlap
ratio in the series of greedy selection outcomes of the three
models can be summarized. Note that the signals vary greatly
across artifact classes; thus, longer/shorter window lengths or
overlaps can lead to better recognition of some artifacts, while
are worse for others.

E. One-Tier and Hierarchical Modeling
Considering the balance of training data volume and the

ease of modeling, the most straightforward architecture is to
train the model by placing STD, the class of standard ECG sig-
nals, on an equal footing with the various artifact types, which
we call a one-tier modeling (1-M), as Fig. 3(bottom) illus-
trates. In the earlier multiple, PI parameter tuning attempts,
STD’s recognition rate did not exceed 50%. Understandably,
many artifact-containing signals are very similar in visualiza-
tion to the standard signals, resulting in considerable false
negative cases of STD. STD’s imperfect recognition rate
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Fig. 2. Instance of the joint window length and overlap ratio selection
using heatmap: SVM with 11 statistical domain features, PI LOOCV,
1-M, and five-best outputs.

Fig. 3. Flow charts of the 1-M (bottom), the hierarchical modeling
(middle), and the hybrid modeling (top).

(or recall) means that there will be a high probability of
warning the problem-free signal wrongly, interfering with
users’ normal acquisition.

To improve STD’s accuracy/recall, we designed a hierar-
chical modeling (2-M), that is, dichotomous recognition for
STD/artifact signals first and then further artifact classification
for segments judged as artifacts, as Fig. 3(middle) depicts.
With 2-M, STD’s PI recognition rates raised to over 60%
(RF or SVM). The errors should be due to the significant
imbalance in the data volume of STD versus TA and the fact
that a fuzzy model mixing all artifact types is not generally
robust.

A model incorporating 1-M and 2-M was envisioned, called
hybrid architecture (H-M), which, in contrast to 2-M, enables
that even segments judged as artifacts in the first layer could
still be classified as STD in the second layer [see Fig. 3(top)],
with a view to further reducing the number of STD’s false
negative instances.

STD’s recognition accuracy with 1-M has been constantly
enhanced to reach acceptable values (over 90%) during a huge
number of experiments for tuning different technical means,

TABLE II
RECOGNITION RATES OF N -BEST LOOCV EXPERIMENTS WITH THE

RF AND THE SVM MODELING FOR COMPARING THE PERFORMANCE

OF ONE-TIER PURE PI AND SEMI-PI TRAINING WITH 11 STATISTICAL

DOMAIN FEATURES. SEMI-PI VALUES INFERIOR TO PI
ARE INDICATED IN GRAY

such as using N -best outputs (see Section IV-G). Furthermore,
the data size imbalance between STD and artifact classes
unresolvable at the present stage hinders the training of 2-M
and H-M. Currently, we focused on 1-M in the offline experi-
ments and the pilot real-time validation. Nonetheless, 2-M and
H-M are of great potential practical value, for example, when
sequential modeling or deep learning is introduced or when
more accurate TA recognition is expected. Moreover, a fuzzy
artifact model for dichotomous judgments, as in 2-M and H-M,
should allow better identification of unknown/unspecified arti-
facts than 1-M.

F. PI Training and Semi-PI Training
Many biosignal-based pattern recognition studies and appli-

cations take person-dependent (PD) training, which also
greatly improves the recognition accuracy; PD training, how-
ever, is not the case in this research. It is impracticable
that signals containing all artifact types need to be acquired
and annotated from the new user beforehand to identify the
acquisition artifacts during a new recording. The goal of
our approach is that the vast majority of new acquisitions
can benefit without barriers, so we trained and evaluated PI
models.

With the advancement of various modeling architectures,
parameter tuning, and other configurations (see other subsec-
tions in Section IV), the PI 1-M model achieves an overall
five-best LOOCV accuracy of over 80% (RF) or 90% (SVM)
(see Fig. 4 and Table II). To further improve STD’s recogni-
tion accuracy (for reasons already explained in Section IV-E),
we tested applying 50% of the currently recognized subject’s
STD data (the rest 50% for evaluating STD) together with
the STD data pool of other individuals for training the
STD model, while all artifact classes remain fully PI, called
semi-person-independent (semi-PI) training. This operation is
feasible in practice, requiring the experimenter to pre-record
the user’s signal for a few tens of seconds as correctly as
possible.

In the 1-M experiments, Semi-PI can slightly improve the
recognition rate of several N-best cases for both RF and SVM,
which Table II and Section IV-G analyze. In the binary layer of
2-M and H-M, semi-PI training did not improve the model’s
performance, which should still be due to the two reasons
mentioned in Section IV-D (the data volume imbalance; the
blurry overall artifact class).
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Fig. 4. Recognition rates of one-tier PI N-best LOOCV experiments
with three non-deep ML models applying 11 statistical domain features.
Each accuracy is the top result of the joint window length and overlap
ratio selection.

A question may arise: Would it be possible to use only
individualized STD data combined with PI artifact data? The
answer is no, according to even worse experimental perfor-
mance. We believe that the main reason is still the extreme
imbalance in the amount of data. In practice, the size of
the newly acquired non-artifact data from the new user is
also not comparable to a stored artifact dataset of a large
magnitude.

Semi-PI has shown only a limited capability for perfor-
mance enhancement; it is also inconvenient in practice, though
feasible. On the one hand, there is a need for artifact-free
acquisition by experimenters or users, some of whom are
not biosignal experts; on the other hand, a period of com-
putation time is required for retraining the model before it
can be put into use. The PI LOOCV without individualized
STD data, even using non-sequential and non-deep ML, has
already achieved acceptable results, as Fig. 4, Table II, and
Section IV-G elucidate profoundly. The future applications
we envision should be pure PI training, with the auxiliary
tool generated by our approaches for signal acquisition users
“plug-and-play.”

G. N-Best Outputs of Recognition Hypotheses
We proposed the N -best-output mechanism for this article’s

research purpose, which does not just give the classification
result with the highest probability, but the top-N most likely
classes in descending order of probability. The fuzziness can
be helpful in artifact recognition, for it can improve the
recognition accuracy of PI training, where interpersonal nor-
mal or artifact-containing signals show significant individual
specificity. In practice, N -best is also helpful for a scientific
data acquisition process—alerting experimenters to multiple
possibilities rather than a single artifact and reminding them
to examine more adequately.

The following strategy for evaluating the experimental
results of N -best was adopted. As long as one of the first
N results is identical to the ground truth, the recognition
is taken as a correct case; If all the first N results do not
match the reference, the one with the highest probability

Fig. 5. Confusion matrix of the one-tier SVM modeling with 11 statistical
domain features, 2-s window length, 20% overlap ratio, PI LOOCV, and
five-best outputs.

is regarded as the recognition output for calculating the
precision, recall, F1-score, accuracy, and confusion matrix
statistics.

Fig. 4 depicts the offline recognition rates of the three
models using one to five-best outputs and pure PI training,
where each result is the best LOOCV recognition rate in the
joint window length and overlap ratio selection, as Fig. 2
suggests. The resulting diagram with all best F1-scores is
similar, with only minor discrepancies in values that do not
influence the judgment.

Table II compares the N -best performance of RF and SVM
using pure PI or semi-PI training. DT is omitted because of
the apparent overall inferior accuracy.

Table II clearly evidences that semi-PI worked even worse
by some N values on both ML approaches; the improvement,
if any, is tiny. Such statistics echo the final arguments in
Section IV-F. The current pilot real-time implementation and
future in-depth studies should focus on pure PI.

Fig. 5 shows the confusion matrix of the five-best pure PI
LOOCV with the highest overall recognition rate (90.89%),
using SVM modeling.

Several artifact classes, such as TA-I, TA-E-O, TA-D-P,
TA-D-N, and TA-D-G, are the main source of recognition
errors. Most of their misattributions are TA-M and TA-S.
As already mentioned in Section IV-B, TA-M-* and TA-S-
* artifacts are indeed the more difficult ones to deal with.
Merging them to two categories, TA-M and TA-S, has quite
an impact on the overall model by absorbing plenty of other
classes’ instances, including STD, as exposed in Fig. 5. The
reason should be mainly the unstable fuzzy model mixing
many classes. Taking TA-M and TA-S out of training did
produce encouraging results (e.g., SVM with 1-s window
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Fig. 6. Confusion matrix of the SVM modeling excluding TA-M and
TA-S, with 11 statistical domain features, 1-s window length, 40%
overlap ratio, PI LOOCV, and five-best outputs.

length, 40% overlap ratio, and five-best PI LOOCV: 96.11%
recognition accuracy and F1-score = 0.96) (see Fig. 6), but
we will commit to analyzing and investigating them deeply.
We also did not exclude TA-M and TA-S in our pilot real-time
validation.

V. FROM OFFLINE TOWARD REAL TIME

Our offline LOOCV experiments can be viewed as pseudo-
real-time evaluations since the parameters, such as window
length, overlap ratio, features, and N -best, among others,
could be directly applicable to the online model. Genuine real
time is more appealing, though. We conducted preliminary
experiments as an initial attempt to validate the real-time
usability of our proposed approach. Using the SDK provided
by the acquisition device (see Section III-A), we developed
real-time signal acquisition and visualization software and,
based on offline PI experimental settings, realized window-
based real-time artifact classification, as the graphical abstract
demonstrates. Longer windows, for example, 8 s, can be
taken to ensure real time, at the expense of a small loss of
recognition accuracy. Experimental results reveal that most
artifact types can be detected and notified to the user after
they are generated, with some aspects for further research and
improvement.

1) A shorter window plus a higher overlap rate often
performs well in offline models, which occasionally
causes real-time delays. A compromise needs further
studying.

2) One-best output currently does not achieve good perfor-
mance (also in the offline model); N -best enhances the
accuracy, while the output order or results sometimes
change over time.

3) Environment-causing artifacts, such as TA-I, are occa-
sionally poorly recognized in real time while sometimes,

in contrast, interfering with other artifacts’ recognition.
Reducing the sensitivity and improving the accuracy
need simultaneous investigation.

VI. CONCLUSION AND OUTLOOKS

We innovated detecting, classifying, and alerting arti-
facts in real time during biosignal acquisition, for which
we proposed a taxonomy of ECG acquisition artifacts and
their simulation methods, collected and shared a 10-subject
199.82-min dataset, conducted large-scale offline experiments,
and developed a preliminary program to validate our method
in real time. Our research provided a perspective that tra-
ditional ML methods also work for data with a predomi-
nantly error/noise/artifact/problem composition. After all, most
research is based on (as much as possible) correct data.

The current real-time procedure verifies that our proposal
is achievable from the proof-of-concept perspective. Further
research aims for stable and widespread application, which
needs to be boosted from two aspects. One is to investigate
sounder offline models, for example, through introducing
sequential or deep modeling, enriching the dataset (especially
the scale of the standard signals), and experimenting with
2-M and H-M. Both hierarchical models can be further aug-
mented with additional layers, such as focusing on classifying
artifact subclasses within the parent categories of TA-M or
TA-S. The second is to design an intelligent real-time feed-
back scheme. For example, to cope with the continuously
changing N -best results, we consider using artifact category
counters that gradually give the most targeted results after
several windows. Alternatively, a real-time probability his-
togram of the entire artifact categories is a worth-implementing
illustration.

Our ML study is oriented toward interpretability. The
paradigm can be practically extended to studying the real-time
artifact classification of other biosignal types.
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