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Abstract
This paper describes the latest Speech-to-Text system de-

veloped for the Global Autonomous Language Exploitation
(“GALE”) domain by Carnegie Mellon University (CMU). This
systems uses discriminative training, bottle-neck features and
other techniques that were not used in previous versions of our
system, and is trained on 1150 hours of data from a variety of
Arabic speech sources. In this paper, we show how different
lexica, pre-processing, and system combination techniques can
be used to improve the final output, and provide analysis of the
improvements achieved by the individual techniques.
Index Terms: speech recognition, discriminative training,
bottle-neck features

1. Introduction
This paper describes recent improvements on the CMU Speech-
to-Text system for Modern Standard Arabic (MSA), which
was developed as part of our efforts in DARPA’s “Global Au-
tonomous Language Exploitation” (“GALE”1) program, for the
2009 Speech-to-Text evaluation, within the “Rosetta” team.

In this paper, we focus on the improvements achieved by
adding bottle-neck features [1] and model- as well as feature-
space discriminative training [2] to our system, in order to create
complementary systems for successful system combination.

1.1. The GALE Speech-to-Text Task

The goal of the GALE program is to develop and deploy the ca-
pability to absorb, analyze and interpret huge volumes of speech
and text in multiple foreign languages, and make them available
in English. Currently, efforts are centered on several variants of
Arabic, and Mandarin.

There has been a lot of process on this task over the last
couple of years, see e. g. [3, 4, 5, 6, 7]. This paper describes the
progress of work at CMU since our initial efforts in 2006 [8],
using the JRTk/ Ibis toolkit [9].

This paper reports numbers on the dev07, dev08, eval08,
and dev09 data sets, which were also used in the official GALE
evaluations, all of which contain about 3 h of audio data. For all
experiments, system parameters were jointly tuned on the “dev”
sets, unless indicated otherwise.

1.2. System Design

The present system is trained on approximately 1 150 h of train-
ing data, taken from the GALE P2 and P3 sets2, using both a
vowelized, and an un-vowelized dictionary. The un-vowelized
system is trained on the Broadcast News (BN) data only, while
the vowelized system is trained on the BN and BC (Broadcast

1http://www.darpa.mil/ipto/programs/gale/gale.asp
2Available from the Linguistic Data Consortium as LDC2008E38

Conversations) sets. The training data provides manual segmen-
tation and speaker clusters.

We extract power spectral features using a FFT with a 10 ms
frame-shift and a 16 ms Hamming window from the 16 kHz
audio signal. We compute 13 Mel-Frequency Cepstral Coef-
ficients (MFCC) per frame and perform cepstral mean subtrac-
tion and variance normalization on a per-cluster basis, followed
by VTLN. To incorporate dynamic features, we concatenate 15
adjacent MFCC frames (±7) and project the 195 dimensional
features into a 42-dimensional space using a Linear Discrimi-
nant Analysis (LDA) transform. After LDA, we apply a glob-
ally pooled ML-trained covariance transformation matrix [10].

For the development of our Gaussian Mixture Model
(GMM) based, context dependent acoustic models, we applied
an entropy-based poly-phone decision tree clustering process
using context questions of maximum width ±2, resulting in
quinphones. In addition, we included “word boundary” tags
into the pronunciation dictionary, which can be used as ques-
tions in the decision tree. The system uses 6 000 quinphones
with up to 64 Gaussians per state, assigned using merge and
split training for Maximum Likelihood (ML) or subsequent dis-
criminative training, with diagonal covariance matrices.

During decoding, we perform automatic speaker cluster-
ing of manually segmented audio. Segments are clustered into
speaker-specific clusters using Bayesian Information Criterion
(BIC), to enable adaptation and normalization [11].

The language model (LM) is trained from a variety of
sources. The Arabic Gigaword corpus distributed by LDC is
the major text resource for language modeling. In addition, we
harvested transcripts from Al-Jazeera, Al-Akhbar, and Akhbar
Elyom, as described in [8]. Acoustic transcripts from FBIS,
TDT-4, GALE BN and BC up to 2008 were also used. The to-
tal number of words in the corpus amounted to 1.1 · 109. To
improve coverage and specificity for both BN and BC data, we
trained 11 different 4-gram language models and interpolated
them using the SRILM toolkit [12]. Interpolation weights were
selected based on a held-out data set selected from BN and BC
sources. The final LM contains 692 M n-grams and a vocab-
ulary of 737 k words. The Confusion Network Combination
passes use an improved language model, which was trained on
all transcriptions available to date, which however only resulted
in an insignificant improvement in word error rate (WER).

Arabic is a phonetic language with a close correspondence
between letters and sounds. One of the challenges however is
that some vowels are omitted in the written form. These vow-
els carry grammatical disambiguation information, and may
change the meaning of a word. Modeling the vowels in the
pronunciation dictionary was found to give improvements, but
we also retain an un-vowelized, grapheme-to-phoneme based
system, as we find it to be beneficial in system combination.
The un-vowelized pronunciation dictionary was generated us-
ing grapheme-to-phoneme rules. It contains 37 phones with 3
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Figure 1: The network architecture used in our experiments:
the MLP input feature has a context window of 15 frames, on
13 MFCC coefficients. The MLP output is taken at the 42-
dimensional bottle-neck layer, and 9 frames are stacked. The
111 nodes in the fourth layer are only used during training.

special phones for silence, non-speech events and non-verbal
effects such as hesitations. We preprocessed the text by map-
ping the 3 shapes of the grapheme for glottal stops to one
shape at the beginning of the word since these are frequently
miss-transcribed. For the vowelized system, we extended the
Buckwalter-based [13] approach described in [8] and use a lex-
icon of about 2.5 · 106 entries.

The system uses three sets of acoustic models in four
passes: (1) speaker independent decoding using the un-
vowelized lexicon (UNVOW SI), (2) speaker adapted decod-
ing (using VTLN, CMLLR, and MLLR) using the un-vowelized
lexicon (UNVOW SA), and (3) speaker adapted decoding using
the vowelized lexicon (VOW SA). After this pass, we adapt the
UNVOW SA models on the VOW SA hypotheses and re-decode
(pass UNVOW SA2), before final system combination.

2. New Techniques
Compared to our previous work, the present system incorpo-
rates two main additions. In this section, we will investigate
these techniques individually, while the following section re-
ports on their performance as part of the evaluation system.

2.1. Bottle-neck Features

Previous work argues that bottle-neck features, a variant of Tan-
dem or MLP features [14], should be trained on a different in-
put representation than the “conventional” system, for example
wLP-TRAP [5, 15]. Improvements are achieved by concate-
nating and decorrelating the conventional and MLP features
before model training. Our results however indicate that the
bottle-neck process in itself creates complementary likelihood
distributions, so that gains can also be achieved by combining a
conventional system with a bottle-neck system using a context
independent weighted sum in log-space, e. g. a “multi-stream”
system. Compared to feature fusion as in most previous work,
this late fusion approach allows for faster development and in-
troduces additional parameters which can be used for optimiza-
tion and tuning. We will therefore refer to single systems as
“MFCC” and “MLP” variants, and use a multi-stream architec-
ture to combine them.

Figure 1 shows the layout of our bottle-neck MLP archi-
tecture. Separate networks were trained for the SI (speaker in-
dependent: no VTLN, no CMLLR feature transform) and SA
(speaker adapted: VTLN, CMLLR feature transform trained on
the output of the MLP) cases, on their respective feature spaces.
VTLN Warping factors for the SA systems were estimated us-
ing an ML-based approach [16], using MFCC models only.

During pre-processing for bottle-neck systems, the LDA
transform is replaced by the first 3 layers of the Multi Layer
Perceptron (MLP) using a 195–3000–42 feed-forward architec-
ture, followed by stacking of 9 consecutive bottle-neck output
frames. A 42-dimensional feature vector is again generated by
LDA, followed by a covariance transform. The neural networks
were trained using ICSI’s QuickNet3 software, on 500 h of data
extracted from the training data using a modulo operator on the
utterance list. The bottle-neck setup is shown in Figure 1.

UnVow SI on dev07 MFCC MLP
WER (%) 20.1 19.6
RTF (median) 5.1 4.1
Average # of back-pointers 56 080 40 849
Average lattice density 59 54
Average neg. log. likelihood 51.8 45.9

Table 1: Comparison of the MFCC and MLP ML-trained sys-
tems. The median per-utterance real time factor (RTF) is being
reported, because measurements of total RTFs are unreliable
on our cluster.

Table 1 shows keys characteristics of the individual UN-
VOW SI systems. The language model weights and beam set-
tings for the MFCC and MLP systems were optimized sepa-
rately, and the MLP system seems to perform better than the
non-MLP system in all respects: all other parameters being
similar, the MLP features can be decoded in less time and has
a more compact search space for a given word accuracy, with
better likelihood than the MFCC system.

For the UNVOW SA system trained using ML, the MFCC
system on its own reaches 16.6 % WER on dev07, the MLP sys-
tem reaches 16.8 %, and a two-stream “MFCC+MLP” system
reaches 15.9 %, using manually adjusted context independent
stream weights. After adaptation however, the MLP stream no
longer outperforms the MFCC stream.

2.2. Generalized Discriminative Feature Transform

Discriminative training was applied to the UNVOW SA and
VOW SA models and MLP and MFCC feature spaces, as shown
in Table 2. We used boosted Maximum Mutual Information
(bMMI) estimation [17] for model space Discriminative Train-
ing (DT), and generalized discriminative feature transformation
(GDFT) [2] for feature space training. GDFT can be considered
as a discriminative variant of the CMLLR algorithm.. The for-
mulation of GDFT allows joint optimization of both HMM pa-
rameters and feature transforms which can significantly shorten
the time for training. In our experiments, GDFT optimizes the
feature transforms for the bMMI objective function.

Unlike the work conducted in [2], regularization is incor-
porated in the GDFT optimization problem. The resulting algo-
rithm is named regularized GDFT (rGDFT). The primal prob-

3http://www.icsi.berkeley.edu/Speech/qn.html
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lem of rGDFT is

G′(W ) =
X

i

|Qi(W )− Ci| +
D

2
||W − W 0||2F ,

where Qi(W ) is the negative log likelihood function of i-th ut-
terance given a linear transform, W ; Ci is the chosen target
value that we want Qi to achieve; W 0 is the backoff linear
transform that we want W to backoff to; ||W − W 0||F is the
Frobenius norm between W and W 0 and D is a tunable param-
eter controlling the weight of this regularization term. When
D = 0, rGDFT reduces to the original GDFT, and W 0 is cho-
sen to be the identity matrix in our experiments.

GDFT has an update equation very similar to CMLLR [2].
With regularization, it only requires adding D× I to the G ma-
trices and D times the row vectors of W 0 to the corresponding
k vectors. This modification allows GDFT to incorporate more
transforms, since the transforms without enough data will sim-
ply backoff to W 0. In our experiments, rGDFT adopts 2 048
transforms while the original GDFT can only support no more
than a few hundred transforms. For the D parameter, we apply
heuristics, i. e. D = E × γden, where E is tuned from 1 to 2.

Overall, gains over ML are up to 10 % relative on the UN-
VOW SA systems, and about 5 % on the VOW SA systems,
for fully trained systems. For lack of resources, the UNVOW
SA MLP system has only been trained for one iteration without
GDFT at this time, but shows improvements as well.

3. System Development
The techniques described above were integrated, and tested on
the conditions of the 2009 GALE STT evaluation. Based on
preliminary experiments, we decided to do an initial first pass
using essentially an existing UNVOW SI system, then adapt
a UNVOW SA system based on the un-vowelized lexicon on
these hypotheses, and finally decode the data with a vowelized
VOW SA system, adapted on the UNVOW SA hypotheses. This
configuration, with appropriate cross adaptation, resulted in the
best performance of the single best final system. MLP streams
were added to the un-vowelized systems, for faster training
and improved diversity. We improve individual systems and
gain about 0.2 % when adapting the VOW SA system (cf. line
“rGDFT+bMMI” in Table 2 and line “Vow SA” in Table 3).

3.1. Speaker Independent Pass

As the segmentation of the test data is given, the first pass UN-
VOW SI simply decodes the data without VTLN and CMLLR/

System dev07 dev08 eval08 dev09
UNVOW SA MLP

ML 16.7 19.7 16.1 23.5
1i bMMI 16.4 19.4 15.7 22.8

UNVOW SA MFCC
ML 16.7 19.3 16.1 22.9
rGDFT + bMMI 15.0 17.7 15.2 22.0

VOW SA MFCC
ML 14.3 15.9 13.9 N/A
rGDFT + bMMI 13.7 15.3 13.3 21.0

Table 2: Summary of single system DT experiments (WER in %).
These systems were adapted using hypotheses from a UNVOW
SI/ SA single stream (MFCC) system, so that the numbers are
slightly worse than the numbers reported in Table 3.

System dev07 dev08 eval08 dev09
UNVOW SI 18.1 20.9 17.2 24.7
UNVOW SA 14.8 17.2 14.3 21.2
VOW SA 13.5 15.2 13.6 20.6
UNVOW SA2 13.6 15.6 13.5 20.0

CNC of VOW SA & UNVOW SA/ SA2
CNC 13.2 15.2 13.2 19.9
CNC2 12.9 14.9 12.8 19.5
Latent Semantic Analysis (LSA, on individual systems)
UNVOW SA’ 14.5 16.9 14.0 20.9
VOW SA’ 13.0 15.0 13.2 20.2
UNVOW SA2’ 13.4 15.5 13.2 19.6

CNC on LSA systems
CNC’ 12.6 14.5 12.4 18.7

Table 3: Top part: Word Error Rates (in %) on GALE data for
different passes, adapted sequentially. Then: Confusion Net-
work Combination (CNC) between these systems and lattice re-
scoring using Latent Semantic Analysis (LSA), plus CNC of LSA
lattices. All UNVOW systems are MFCC+MLP two-stream sys-
tems, VOW SA is MFCC only.

MLLR adaptation, in order to generate a first hypothesis for
subsequent unsupervised adaptation to the test data. The acous-
tic model of this two-stream “MFCC+MLP” system consists
of an equally weighted log-linear interpolation of two acoustic
scores computed by Gaussian Mixture Models (GMMs) trained
as described in Sections 1.2 and 2.1. Both streams share the
same context decision tree, trained on the non-MLP feature
space with a context of ±2 phones, and contains 6 000 leafs.

The MLP was trained on non-VTLN MFCC features from
a 250 h subset of the GALE training data (selected using a mod-
ulo operation on utterances) for 8 epochs using QuickNet, and
reached 52.8 % frame accuracy on the training data, and 51.4 %
frame accuracy on the cross validation data, for which we ran-
domly chose 13 h from the remaining GALE data. The MLP
was trained on 111 context independent sub-phonetic states as
targets. Training took 32 h on an 8 core Linux server.

On dev07, this two-stream system delivers a WER of
18.1 % (see Table 3) instead of 19.6 % and 20.1 % (see Table 1)
for the single-stream MLP and MFCC systems. During adapta-
tion, we compute scores for all needed codebooks and frames,
and store them, instead of the adapted codebooks. This saves
time, RAM, and disk space, because an array of codebooks can
be evaluated very efficiently on modern multi-core processors.

3.2. Un-Vowelized Speaker Adapted Pass

The acoustic models for this UNVOW SA pass are adapted on
hypotheses and confidences generated using UNVOW SI. The
MLP was trained on a 500 h subset of the GALE training data,
with the same 13 h test set. It achieved a frame accuracy of
53.3 % after 8 iterations of training (51.5 % on the cross valida-
tion data), which required 96 h of training.

The individual acoustic models are trained in a feature
space that has been adapted to speakers using CMLLR, and
we are using the rGDFT+bMMI acoustic models for the MFCC
case, and bMMI acoustic models for the MLP case. Using ML
models, the MLP stream reaches about the same performance as
the MFCC stream (Table 2), and the optimized two-stream sys-
tem numbers given in Table 3 are about 0.3-0.6 % better than the
best single stream system. The MLP system was only trained
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with a single iteration of bMMI due to training time constraints,
so that the performance is not yet optimized. To increase the di-
versity within systems, we also trained the MFCC system with
8 000 states, instead of 6 000, however this did not improve the
performance of the combined system.

For improved cross-adaptation, we also adapted these
acoustic models using the hypotheses from the VOW SA pass
(see below), and called this the UNVOW SA2 pass. This pass
is 0.8-1.6 % better than UNVOW SA, and reaches roughly the
same performance as the VOW SA pass.

3.3. Vowelized Speaker Adapted Pass

This pass VOW SA is adapted on UNVOW SA. Due to training
time constraints, we did not train a separate MLP-based system
for the vowelized condition, but used the MFCC system alone.
This discriminatively trained single-stream system reaches the
same performance as the two-stream discriminatively trained
un-vowelized MFCC+MLP system UNVOW SA2, which was
adapted on VOW SA, see Table 3.

3.4. Lattice Rescoring and System Combination

In a final step, we re-scored the lattices generated by our
adapted systems using a Latent Semantic Analysis (LSA) [18]
based language model. Also, we combined lattices from dif-
ferent passes before and after LSA using Confusion Network
Combination (CNC). LSA typically improves the word error
rate (WER) by about 0.3 % absolute. Combining the VOW
SA system with UNVOW SA2 (“CNC2”) instead of UNVOW
SA (“CNC”) improves the performance by about 0.3 %, even
though UNVOW SA2 is about 1.2 % better than UNVOW SA.
Combining the UNVOW SA’ and VOW SA’ LSA systems us-
ing CNC leads to the overall best system CNC’. At this point,
a combination with the re-adapted system UNVOW SA2’ does
not improve the performance further.

4. Conclusion and Future Work
This paper presents recent work, mainly on core acoustic mod-
eling techniques, applied to the GALE Arabic Speech-to-Text
task. By adding discriminative training of acoustic models us-
ing a new approach which transforms both features and models
in the same model update, and by adding a bottle-neck layer to
the feature pre-processing, we were able to improve the word
error rate of our Arabic STT system by more than 10% relative,
compared to our 2008 system, which again presents a major im-
provement from previous own published work [8].

Absolute system performance could certainly be improved
further, in particular on newer test data, by re-training acoustic
and language models on all the available data, and be further op-
timizing settings. The MFCC+MLP setup performs well, also
for system combination, however we were not yet able to fully
explore the set-up for cross-adaptation of acoustic models, as
in [19], and fully optimize the bottle-neck setup. Future work
will investigate combinations of bottle-neck pre-processing and
feature- and model-space discriminative training, particularly
to improve the performance on low accuracy parts of the data,
acoustically challenging recordings, and dialectal data.
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