
Keynounce
–

A Game for Pronunciation
Generation through

Crowdsourcing

Student Research Project at the Cognitive Systems Lab (CSL)
Prof. Dr.-Ing. Tanja Schultz

Department of Computer Science
Karlsruhe Institute of Technology (KIT)

from

Daniel Lemcke

Supervisors:

Prof. Dr.-Ing. Tanja Schultz
Dipl.-Inform. Tim Schlippe

Begin: 02. January 2013
End: 31. March 2013

iii

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, den 8. February 2013

Abstract

With the online tool Keynounce we prove, that it is possible to generate pronun-
ciation dictionaries with the help of an unknown and potentially unskilled crowd
on the Internet. By providing a keyboard of sounds, as well as a synthesizer, the
users actually have fun transcribing words into phoneme strings. This significantly
reduces the cost of creating dictionaries compared to paying skilled linguists.

In addition to reducing costs, creating dictionaries for languages for which linguists
are rare or not available, will be possible. Dictionary creation then simply depends
on finding enough willing users with a sufficient knowledge (fluent speakers) of the
targeted language. The languages in our testing scenario where English and German.

By providing a gaming experience, users voluntarily create pronunciation dictio-
naries. Dictionary creation is thus reduced to automatically filtering the provided
content to get the best results.

For German pronunciations, all the collected data results in a phoneme error rate
of 34.7% compared to GlobalPhone, which is based on validated pronunciations.
After applying one simple filtering technique this number drops to 22.7%. When we
discard the results from users who did not participate long enough, the phoneme
error rate drops to 31% and 20.8% after post-processing. These results are based on
a rather small crowd an with a bare minimum of post processing.

Zusammenfassung

Mit dem Online Tool Keynounce beweisen wir, dass es möglich ist, Aussprachewörter-
bücher mit Hilfe von unbekannten Internetnutzern zu erstellen. Keynounce stellt
eine Tastatur mit verschiedenen Phonemen und eine synthetische Sprachausgabe
zur Verfügung. Durch diese Kombination haben die Nutzer Spaß daran, Wörter
in Aussprachen zu transkribieren. So erreichen wir eine wesentliche Reduzierung
der Kosten zur Erstellung eines Aussprachewörterbuchs, vor allem im Vergleich mit
professioneller Erstellung.

Zusätzlich zur Kostenreduzierung wird so auch die Erstellung von Aussprachewörter-
büchern von Sprachen möglich, für die es wenige oder sogar gar keine Experten
gibt. Es müssen nur genug Menschen gefunden werden, die diese Sprache fließend
sprechen. Die von uns getesteten Sprachen sind Englisch und Deutsch.

Durch die spielerische Gestaltung von Keynounce sind unsere Nutzer mit Spaß
an den Aufgaben und motivieren eventuell neue freiwillige Nutzer. Insgesamt re-
duzieren wir die Erstellung eines Aussprachewörterbuchs damit auf das Filtern von
Ergebnissen.

Nimmt man alle deutschen Aussprachen zusammen, kommen wir auf eine Phonem-
fehlerrate von 34,7% gegenüber GlobalPhone, welches auf vorhandenen Aussprachen
basiert. Nach der Anwendung einer einfachen automatischen Filterungstechnik er-
reichen wir 22,7% Phonemfehlerrate. Indem wir die Ergebnisse von Nutzern ignori-
eren, die nur wenige Wörter bearbeitet haben, können wir die Phonemfehlerrate auf
31% oder nach der Filterung auf 20,8% reduzieren.

Contents

1 Introduction 1
1.1 Goals of this Study . 1
1.2 GlobalPhone and CMU Dict . 2
1.3 Crowdsourcing . 2
1.4 Structure . 3

2 Basics 5
2.1 Automatic Speech Recognition . 5
2.2 Pronunciation Dictionary . 6
2.3 Amazon Mechanical Turk . 6
2.4 International Phonetic Alphabet . 7

3 Related Work 11
3.1 Peekaboom . 11
3.2 Human Factors during Bootstrapping 13
3.3 LexLearner . 13
3.4 Summary . 13

4 Analysis of Requirements 15
4.1 Requirements . 15
4.2 User analysis . 16
4.3 Analyzing user task . 17
4.4 Summary . 18

5 Design 21
5.1 General Interface Design . 21
5.2 Backend Implementation . 23
5.3 Specific Interface Design . 24
5.4 Summary . 30

6 Experimental Setup 31
6.1 Experiment on Amazon Mechanical Turk 31
6.2 Free Game Experiment . 33
6.3 Summary . 34

7 Results 35
7.1 mTurk . 35
7.2 Voluntary Keynounce . 38

7.2.1 General results . 39
7.2.2 Results after postprocessing 42

x Contents

7.3 Summary . 45

8 Conclusion 47

9 Future Work 49

Bibliography 51

Index 53

1. Introduction

This work describes the complete process of building our web-based system Key-
nounce to gather phonetic notations. These notations can be used to create pronun-
ciation dictionaries for Automatic Speech Recognition (ASR) systems at Cognitive
Systems Lab (CSL) [1]. In the future the system can be an extension of the Rapid
Language Adaptation Toolkit (RLAT) [2] to generate or enhance pronunciation dic-
tionaries or let them be built by the Internet community.

With Keynounce we want to prove, that it is possible to generate high-quality pro-
nunciation dictionaries with the help of an unknown and possibly unskilled crowd
on the Internet. On the following pages we describe the complete process of creating
the system, starting with the idea and the necessary terms and concepts, followed by
the design and implementation choices that we have made. We explain the choices
we have made and the solutions we have found, as well as the alternatives and why
we have not chosen them.

Before designing a web-based system which encourages people to produce accurate
pronunciations, a lot of decisions have to be made to make the system intuitive,
robust and effective. The system should also engage the users’ interest to prevent it
from being a chore. It is our goal to discuss these decisions and review their impact
on the system. Based on them, we used existing tools or built custom software to
realize our system.

1.1 Goals of this Study

The main goal of this study is to prove, that anonymous Internet users can create
or enlarge pronunciation dictionaries for ASR systems. The resulting dictionaries
should have these qualities:

• Good quality compared to dictionaries created by linguists

• Low cost in creation

• Little to no postprocessing

2 1. Introduction

To successfully accomplish this task, the main requirements are a stable Internet
connection and an application which prompts the user and records his or her de-
cisions.1 There are other requirements for the system itself concerning usability,
stability and performance. These constraints are secondary to the main require-
ments as the system could function without them. All requirements are discussed
in detail in Section 4.1.

With this tool it will then be possible to harness the potential knowledge of Internet
users all around the World Wide Web to create pronunciation dictionaries. This
would reduce the costs of creating these dictionaries compared to paying skilled
linguists. In addition to reducing costs, dictionaries for languages for which linguists
are rare or not available at all will be possible. Dictionary creation will depend on
finding enough willing users with a sufficient knowledge (fluent speakers) of the
targeted language.

1.2 GlobalPhone and CMU Dict

GlobalPhone is an ongoing database collection that provides transcribed speech data
for the development and evaluation of large speech processing systems in the most
widespread languages of the world [3][4]. Pronunciation dictionaries in 20 languages
have been established. As resources widely read national newspapers available on the
World Wide Web were selected. Due to that, texts from national and international
political and economic topics restrict the vocabulary.

As referencing material to compare our results with, we used English and German
dictionaries in GlobalPhone style. The dictionary for the English language is the
original GlobalPhone dictionary and contains 84,704 words or variations of a word.
The German dictionary is based on the CMU dict2 and contains 46,942 words or
their variations. Both dictionaries feature one or more pronunciations for each word.
We selected 100 random words from each dictionary. Pronunciation variations where
not separately chosen. As we discuss in Section 5.3, we use these pronunciations as
references for our results to compare with.

1.3 Crowdsourcing

The term crowdsourcing was coined by Jeffrey Howe[5] in 2006. Instead of the
traditional outsourcing, where a company moves parts of its own structure or part of
the workflow to a separate company, crowdsourcing gives a problem to an anonymous
crowd. The incentive for the workforce is not simply money, but acknowledgment,
fame, appreciation and joy are major factors to produce quality work.

After studying more than 40 definitions of crowdsourcing, Estellés and González
(2012) propose a new integrating definition:

Crowdsourcing is a type of participative online activity in which an in-
dividual, an institution, a non-profit organization, or company proposes
to a group of individuals of varying knowledge, heterogeneity, and num-
ber, via a flexible open call, the voluntary undertaking of a task. The

1The willingness of the users is a prerequisite.
2https://cmusphinx.svn.sourceforge.net/svnroot/cmusphinx/trunk/cmudict/

1.4. Structure 3

undertaking of the task, of variable complexity and modularity, and in
which the crowd should participate bringing their work, money, knowl-
edge and/or experience, always entails mutual benefit. The user will
receive the satisfaction of a given type of need, be it economic, social
recognition, self-esteem, or the development of individual skills, while
the crowdsourcer will obtain and utilize to their advantage that what
the user has brought to the venture, whose form will depend on the type
of activity undertaken [6].

1.4 Structure

In this chapter we have given a short introduction how we want to show, that
pronunciation generation through Internet users is possible, as well as the reasons
that motivated this study. We have also given a short overview about the Rapid
Language Adaptation Toolkit and the GlobalPhone database and Crowdsourcing,
which all feature in our study.

In chapter 2 we explain the basics, which are needed for this study. This includes the
concept of Automatic Speech Recognition and more specifically the Pronunciation
Dictionary, as well as Amazon’s Mechanical Turk and the International Phonetic
Alphabet. Chapter 3 gives an overview of related work. These works are Peekaboom,
a game to have Internet users add meta information to pictures, a paper about
the human factors when bootstrapping a pronunciation dictionary as well as the
LexLearner which is also part of the Rapid Language Adaptation Toolkit.

In Chapter 4 we analyze the requirements for the system followed by establishing
the targeted group of users, together with a consideration about motivation, usage,
and availability. We also analyze the actual task that we could give the users in
respect to difficulty, workability and incentive.

Chapter 5 shows our progress from the general interface design ideas to the finished
interface. We also explain, why certain changes or decisions were necessary or useful.
Which specific implementation is used in the backend is also discussed.

The results of three different sets of experiments are provided and explained in
Chapter 7. We furthermore analyze the results as far as possible.

In Chapter 9 we conclude our work and point out, what changes or additions could
be made. In addition we formulate some use-cases and possible extensions of this
work and the impact this could have on ASR.

4 1. Introduction

2. Basics

2.1 Automatic Speech Recognition

The fundamental problem of speech recognition is to find the most likely word
sequence given audio file with speech. Factors like speaker variability, noisy envi-
ronment and different properties of the recording equipment have negative influence
on the recognition performance. The following formula (2.2), based on the Bayes’
rule (2.1) summarizes the computational model used for large vocabulary continuous
speech recognition (LVCSR):

PrpW|Xq “
PrpWqPrpX|Wq

PrpXq
(2.1)

Ŵ “ arg max
W

PrpW|Xq “ arg max
W

PrpWqPrpX|Wq (2.2)

As a result of the digital signal processing the acoustic signal is represented as
a sequence of acoustic vectors X “ X1X2...Xn that captures the short time spec-
trum of the speech. The goal is to estimate the most probable word sequence
Ŵ “ Ŵ1Ŵ2..Ŵm depending on the linguistic knowledge we have for the language
PrpWq and the extracted acoustic rules. The probability of observing signal X given
the fact, that word sequence W is spoken, forms the acoustic model PrpX|Wq. When
computing the most probable word sequence, the denominator from the Bayes’ rule
PrpXq is not considered, since it does not play a role in the maximization of the
function. Finally, to find the word sequence with the highest probability, a search
strategy must be applied. The most used search algorithms in speech recognition
are A* and Viterbi search.

6 2. Basics

Signal
Processing

Unit

Decoder: global search

Maximize Ŵ = Pr(W). Pr(X | W)
speech

recognized
word

sequence

acoustic
observation

X

Acoustic
Model

Pr (X | W)

Language
Model

Pr (W)

Acoustic
analysis

Figure 2.1: ASR

2.2 Pronunciation Dictionary

The acoustic model of the LVCSR is a mapping between transcriptions and pronun-
ciations. The term ”dictionary” is sometimes substituted with the term ”lexicon”.
There is no standard for how to format a dictionary. Depending on the system’s
structure, the format can vary. Usually it is a map-like structure with words as keys
and pronunciation strings as values.

Since a word can have multiple pronunciations, the dictionary structure must allow
adding pronunciation variants and a way of marking them as pronunciation variants
of the same word.

The keys (words) of the dictionary are language dependent and usually use the
alphabet of the language to be recognized. The pronunciations of the words are
given as phonetic transcription. There are standard phonetic transcriptions systems
like the International Phonetic Alphabet (IPA), which is discussed in Section 2.4.
There are many others developed for general or special purposes.

Example dictionary entries of English words and transcription in GlobalPhone are:

abbreviate {{AX WB} B 9r IY V IY EY {T WB}}

abbreviated {{AX WB} B 9r IY V IY EY DX AX {DH WB}}

abbreviated(2) {{AX WB} B 9r IY V IY EY DX IX {DH WB}}

The pronunciation dictionary is the connection between words and phones. Depend-
ing on the application, the size of the dictionary can be from few words to millions
of words. Speech recognizers for LVCSR use normally thousand words and above.

2.3 Amazon Mechanical Turk

The Amazon Mechanical Turk (MTurk) is a crowd sourcing Internet platform that
establishes a marketplace for micropayment jobs 1. MTurk is part of the Amazon
Web Services. At this platform Requesters can offer tasks known as HITs (Human
Intelligence Tasks) to Turkers and grant a monetary reward (plus 10% Amazon

1https://www.mturk.com/

2.4. International Phonetic Alphabet 7

fee) for its completion. Mostly these tasks consist of problems which computers
are unable to do or are faster and more accurately done by humans. Widespread
tasks are choosing the best photo that represents a given word or location, writing
product descriptions, tagging content as safe for an immature audience, etc. Turkers
can browse all tasks and can choose to complete them for the set payment.

The reward is payed after the Requester accepts the work, or automatically after
a period of time, set by the Requester beforehand. In addition to the reward, the
Turker also gets an update to his or her Approval Ratio (percentage of approved
assignments), which effectively measures the quality of the work done by any Turker.
Rewards are normally at around a couple of cents per assignment. So the Approval
Ratio is a very important asset for the Turkers, since it may qualify them for higher
paid tasks. It is also possible to assign a bonus to a Turker.

To assure a higher quality of results on his or her assignments, a Requester has some
options of limiting access to certain groups of Turkers. Upon creating the HIT a
number of predefined or self-created qualification can be chosen (Approval Rating,
Number of HITs finished, Location, Adult Content). Qualifications created by the
Requester have to be awarded to Turkers manually (e.g. Turkers who often worked
for the same Requester) or in some cases automatically after completing a test. The
HITs can also have a general entry test.

To place the HITs, the Requester can use an API or a more limited but better
documented Requester site. The Requester can build single HITs. But most of the
HITs consist of a batch of several assignments where one type of problem is given
in variations. The Requester can also define, that a single assignment be completed
by several unique Turkers. Assignments which were rejected by the Requester can
automatically be replaced in the marketplace for other Turkers to work on.

At Cognitive Systems Lab Amazon’s Mechanical Turk was used to perform text
normalization tasks on large amounts of sentences in a tight time frame. This
is possible, since a HIT with lots of assignments can be done by several Turkers
simultaneously.

2.4 International Phonetic Alphabet

We have chosen the International Phonetic Alphabet (IPA) in order to get pro-
nunciation information from the World Wide Web. The International Phonetic
Association was formed by a group of French and British language teachers in the
late 19th century. The first publication of the International Phonetic Alphabet was
published by Paul Passy in 1888.

We selected this alphabet because of the following criteria: IPA is designed to rep-
resent one symbol for each verbalizable sound and vice versa in all of the languages
in the world. This fact makes this alphabet really international as it can be used
in every language and can be easily understood. Also, it can help people - whether
they are learning or teaching a new language - by using IPA in a simple and intu-
itive way [7, 8]. Besides, IPA reduces ambiguity in denoting phonemes and is very
useful as it is used in many dictionaries, e.g. dictionaries from UK publishers such
as Cambridge, Collins, Longman, Oxford and also dictionaries from the German
publisher Langenscheidt. Furthermore other phonetic alphabets are based on IPA,
e.g. X-SAMPA.

8 2. Basics

 THE INTERNATIONAL PHONETIC ALPHABET (revised to 2005)
CONSONANTS (PULMONIC)

´

A Å

i y È Ë ¨ u

Pe e∏ Ø o

E { ‰ ø O

a ”
å

I Y U

�Front� Central �Back

Close

Close-mid

Open-mid

Open

Where symbols appear in pairs, the one
to the right represents a rounded vowel.

œ

ò

Bilabial Labiodental Dental Alveolar Post alveolar Retroflex Palatal Velar Uvular Pharyngeal Glottal

Plosive p b t d Ê ∂ c Ô k g q G /
Nasal m µ n = ≠ N –
Trill ı r R
Tap or Flap v | «
Fricative F B f v T D s z S Z ß Ω ç J x V X Â © ? h H
Lateral
fricative Ò L
Approximant √ ® ’ j ˜
Lateral
approximant l  ¥ K

Where symbols appear in pairs, the one to the right represents a voiced consonant. Shaded areas denote articulations judged impossible.

CONSONANTS (NON-PULMONIC)

SUPRASEGMENTALS

VOWELS

OTHER SYMBOLS

Clicks Voiced implosives Ejectives

> Bilabial ∫ Bilabial ’ Examples:

˘ Dental Î Dental/alveolar p’ Bilabial

! (Post)alveolar ˙ Palatal t’ Dental/alveolar

¯ Palatoalveolar ƒ Velar k’ Velar

≤ Alveolar lateral Ï Uvular s’ Alveolar fricative

 " Primary stress

 Æ Secondary stress

ÆfoUn´"tIS´n
 … Long e…
 Ú Half-long eÚ

 * Extra-short e*
˘ Minor (foot) group

≤ Major (intonation) group

 . Syllable break ®i.œkt
 ≈ Linking (absence of a break)

 TONES AND WORD ACCENTS
 LEVEL CONTOUR

e _or â Extra
high e

ˆ

 or ä Rising

e! ê High e$ ë Falling

e@ î Mid e% ü High
rising

e~ ô Low efi ï Low
rising

e— û Extra
low e& ñ$ Rising-

falling

Õ Downstep ã Global rise

õ Upstep Ã Global fall

© 2005 IPA

 DIACRITICS Diacritics may be placed above a symbol with a descender, e.g. N(
 9 Voiceless n9 d9 ª Breathy voiced bª aª 1 Dental t 1 d1
 3 Voiced s3 t 3 0 Creaky voiced b0 a0 ¡ Apical t ¡ d¡
 Ó Aspirated tÓ dÓ £ Linguolabial t £ d£ 4 Laminal t 4 d4
 7 More rounded O7 W Labialized tW dW) Nasalized e)
 ¶ Less rounded O¶ ∆ Palatalized t∆ d∆ ˆ Nasal release dˆ
 ™ Advanced u™ ◊ Velarized t◊ d◊ ¬ Lateral release d¬
 2 Retracted e2 ≥ Pharyngealized t≥ d≥ } No audible release d}
 · Centralized e· ù Velarized or pharyngealized :
 + Mid-centralized e+ 6 Raised e6 (®6 = voiced alveolar fricative)

 ̀ Syllabic n` § Lowered e§ (B§ = voiced bilabial approximant)

 8 Non-syllabic e8 5 Advanced Tongue Root e5
 ± Rhoticity ´± a± ∞ Retracted Tongue Root e∞

∑ Voiceless labial-velar fricative Ç Û Alveolo-palatal fricatives

w Voiced labial-velar approximant » Voiced alveolar lateral flap

Á Voiced labial-palatal approximant Í Simultaneous S and x
Ì Voiceless epiglottal fricative

 ¿ Voiced epiglottal fricative
Affricates and double articulations
can be represented by two symbols

 ÷ Epiglottal plosive
 joined by a tie bar if necessary.

kp ts

(

(

Figure 2.2: IPA chart revised 2005

2.4. International Phonetic Alphabet 9

The International Phonetic Alphabet mainly consists of letters from the Roman
alphabet, only if not avoidable new symbols were established (see Figure 2.2). The
IPA chart contains vowels, consonants, different intonations and diacritics. For more
information about the IPA chart, please visit the official website of the International
Phonetic Association [9].

10 2. Basics

3. Related Work

The ascension of the World Wide Web as a major factor in public life has made
communal projects within the Internet crowd popular and successful. An example
of a successful crowd project is the Internet encyclopedia Wikipedia [10], which is
mainly maintained by unpaid and largely unknown individuals across the world.

Scientists have also tried to harness the power of the Internet community to help
solve problems that computers are not able to handle. One large breakthrough was
made, when a 15 year old biological puzzle on the way to battle AIDS was solved
in just three weeks by amateur computer players [11]. This was done with the help
of Foldit [12], a game built at the Center for Game Science [13] at the University of
Washington, Seattle. Foldit attempts to predict the structure of a protein by taking
advantage of humans’ puzzle-solving intuitions and having people play competitively
to fold the best proteins. The solutions can than be used for medical purposes.

There are some interesting projects about using the Internet for ASR. But as far
as we could find, no one was researching in the area of dictionary creation through
crowdsourcing. Three of them had an impact on what we do:

• Peekaboom

• Human Factors during Bootstrapping

• LexLearner

All three studies are further described in the following sections.

3.1 Peekaboom

At Carnegie Mellon University, they research how to harness the computational
power of human brains by letting people play online games that actually accomplish
a certain goal. They call them Games with a Purpose or GWAP [14]. Out of the
different games on their website there was one, Peekaboom [15], that influenced this
work. This game focuses on collecting meta information for images by trying to

12 3. Related Work

Figure 3.1: Game PeekaBoom, where two players find meta information for pictures

determine, which area of the image a keyword refers to. They use images from the
Internet and in another game associate keywords with them.

Two random players are paired up and given a word/picture pair. One player is
in the role of Peek, while the other is Boom. Only Peek sees the image and the
associated word and he or she reveals part of the image so that Boom can guess the
correct word. This setup can be seen in Figure 3.1.

Points are awarded for the size of the uncovered area, where smaller is better. Also
Peek can give several predefined hints, such as verb or noun, for which bonus points
are awarded. That seems counterintuitive but the purpose of the game is to collect
meta information. Knowing if the keyword is a noun or verb is useful for the purpose
of the game. After the word is guessed, their roles are reversed and a new image/word
pair is given. Players have four and a half minutes to complete as many pairs as
possible. Both players get the same amount of points at the end of one session and
then get paired with another player, if they want to continue.

Apart from the fun of playing the game, players get on high score lists and can
improve their standing there, which is a further incentive to keep playing. That this
was a success is documented in the amount of data that was collected. In about 11
months (August 2005 to June 2006) nearly 30.000 users generated over two million
pieces of data. On average players spent about 72 minutes on the game in a single
session.

To prove that their collected data was accurate and to show what could be done
with it, they extracted the area in each image, referenced by the keyword. After a
couple of players have used the same image/word pair, it was possible to make a very
accurate guess about the exact area the keyword was referring to. This area was
calculated from the several areas revealed by different Boom players. They could
then show, that the collected data from the game was as good or even better in
pinpointing the desired object, than bounding boxes made by volunteers. For this
a bounding box was calculated, which would encompass all of the aggregated data

3.2. Human Factors during Bootstrapping 13

of the players. On average the two bounding boxes, made by the system and the
volunteers, were very close together.

3.2 Human Factors during Bootstrapping

In [16] the effect of the human factor in bootstrapping a pronunciation dictionary
was evaluated. It was evaluated if helpers with limited or no linguistic experience
could develop a quality pronunciation model in less time than it would take a trained
expert to do using conventional methods.

For this purpose a system was designed which presents the user with a written
version of a word of the target language, a prediction for a pronunciation, made by
the system, and the ability to sound out each phoneme of the prediction. When
sounding out the phonemes a prerecorded sound for the selected phoneme is played
back to the user. Then the user can decide, if the sequence of predicted phonemes
is correct. By altering the sequence, the user also alters the prediction procedures
of the system, making them more accurate.

This process speeds up the process of creating a substantial pronunciation dictio-
nary considerably, compared to conventional methods. This is possible, because the
adapting prediction process of the system cuts down significantly on the number of
corrections per word a user has to make. Additionally it is possible for unskilled
users to produce high quality dictionaries, rivaling those made by linguistic experts.

3.3 LexLearner

A very similar method to [16], is the Lexicon Learner (LexLearner). LexLearner is
part of the Rapid Language Adaption Toolkit [2]. The LexLearner component is
responsible for generating word pronunciations with the aid of a user. Users do not
have to be linguistic experts but need to be proficient in the target language.

In an initialization stage, rules to predict pronunciations are seeded by asking the
user to match phonemes with their most commonly associated grapheme. These
rules are then used to present the user with a pronunciation prediction for a word.

As suggested by [16], these predictions are accompanied by a wavefile which is gen-
erated through a phoneme-concatenation synthesizer. The user corrects the pronun-
ciation and the system updates the rules accordingly.

Further details are described in [17].

3.4 Summary

These three examples have shown us the following things:

• Internet users can generate useful information

• Internet users will participate, given the right incentive

• The aggregate information can be calculated to present a higher value, than
the single pieces

14 3. Related Work

• Human listening and comparing abilities enable them to correct phoneme se-
quences for written words

• Linguistically unskilled users can produce pronunciation dictionaries rivaling
professional work

With that in mind, we would then start to build our own system, which would
incorporate some of the concepts and ideas, reviewed in this chapter.

4. Analysis of Requirements

4.1 Requirements

When implementing a system one could define two distinct properties - desirable and
obligatory. The obligatory properties are the basic requirements which we have to
meet. The desirable properties are what makes the system user friendly and overall
a satisfactory experience.

The essential requirements for our system are the following: Inexpensive, robust,
simple.

To make the acquisition of pronunciations worthwhile, we need to have an inex-
pensive system. Otherwise there would be no advantage to building a new system inexpensive

compared to hiring professional linguists to do the work. We meet this requirement
by using open source software wherever possible. Everything else we implement
ourselves around the existing software.

To make the system as robust as possible, we use established and well-proven robust

components. The system is supposed to run as unimpeded as possible and we want
to avoid any teething troubles within the components themselves. This leads us to
the last requirement - simplicity.

To design a robust system goes hand in hand with simple. A simple, straight simple

forward approach leaves a lot less room for mistakes or misunderstandings with
the user than a complex system. Thus a clearcut user interface and tasks make
for a robust as well as a simple and user friendly system. Complex features like
registration, identification and excessive guidance of the user are avoided as much
as possible or done automatically.

We also need other qualities in our system. But these are secondary to the afore
mentioned ones because they are not essential. We want to make use of the most
common aspects of every person’s knowledge of speech and make the users use his
abilities to produce high quality pronunciation data for scientific use. We derive from
this, that our system needs an intuitive user interface and work flow. This removes
the necessity of training users beforehand and makes them more comfortable with
the system.

16 4. Analysis of Requirements

4.2 User analysis

As this work should prove the viability of a gaming approach to gathering dictionary
data for ASR systems with the help of online users, we need an easily accessibleaccessible

system. That means that we should aim on not excluding any participants but rather
filter inappropriate data afterwards. Any kind of restriction on our side might bar
users from the experiment. The only restrictions that we want to lay down are those,
that come with the technology. So anyone with an Internet connection and a fairly
modern browser should be able to participate.

For this work we wanted to establish four different categories which should encom-
pass all of the anticipated users of our experiment:

• Onlooker

• Gamer

• high incentive Gamer (hiG)

• Troll

For classifying the behavior of our participants, we proceed on the assumption that
the game will provide a few words for the users to translate before offering any kind
of results, review or feedback. A session is a group of words, which need to be
translated to phonemes. Each session ends with a review of the users results and a
comparison with other results and the reference pronunciation. For users without
any experience, the first one or two sessions might be practice, since they do not get
feedback until they have finished the first session.

We label those users Onlookers, that were asked to play the game, or have somehowOnlooker

heard of it and test it, out of mild curiosity or a feeling of obligation. This group
does not try very hard and does not participate in the game for more than one or two
sessions, sometimes even leaving in the middle of a session. We do not differentiate
between those who find the exercise too demanding or those whose interest we could
not engage. We expected this group to be the largest in the study but input from
these users probably does not yield too much valuable information, since they never
get past the learning stage.

In our category of Gamer we classify those users who finished the learning stage ofGamer

the game. They are open to a new experience and are actively trying to get the best
results. This means getting to know the controls and looking at their own results
to improve their understanding of the problems. To do that, the Gamer has to
complete at least two cycles of the experiment and is shown the results from which
to learn. If he or she continues to play more than two sessions, they are then moved
up from Onlooker to Gamer. The results expected from this group are what we are
aiming for. The participants are actively interested and try for the best results. We
hoped that this is the largest group providing us with enough data to work with.

The hiG are the users who for some reason or other stay with the experiment forhiG

a long time. This reason could be a personal involvement with the experiment or
a fascination with the game. We expected to see some people in this class. Since

4.3. Analyzing user task 17

this experiment is not a full-blown game, the long term incentives are limited or
nonexistent. We therefore expected this group to be rather small. Depending on
their reason for participating excessively, their results may vary. The results might
range from being of good or even outstanding quality from fascinated users, to being
below average if the incentive is a heavy sense of obligation and no real enthusiasm
for the game. It is also possible, that these users do not improve their performance
after a certain point, but just finish faster. This is conceivable, since the task itself
does not, at this early stage, offer a lot of variety.

The last category that we want to establish is the one of the Troll. The term is used Troll

on the Internet for a person making disruptive and unreasonable remarks in online
discussions [18]. In our case this should encompass everyone whose intention is not
in adhering to the rules and playing the game as it is meant to be played. Since our
experiment is open to the Internet community without any required identification of
the participants, we expected this group to be quit large. Input from this group yields
no valuable information and can be treated as noise. As we conduct our experiments
within a rather limited group of people, we periodically check the results. Results
or usernames that are offensive or indecent are manually renamed or removed. This
is just a precaution to not offend other participants, since they might expect this
kind of behavior on the Internet in general but not in a university study. We do try
not to alter the input in itself but just change the visible parts to something less
harmful.

While we expect to see all types of participants in our experiment, we hope and aim
specifically for the Gamer and the fascinated hiG.

Another assumption on our part is, that our expected user has little or no prior
knowledge of creating linguistic data. Furthermore pronunciation alphabets like the
International Phonetic Alphabet (IPA) [9] can not be assumed to be known to the
users. This leads to the conclusion, that our system should either train all users to
a certain degree or better yet, be so intuitive that no prior knowledge is needed. intuitive

Optimally we can design a system where the user creates the linguistic data without
needing to understand the concept behind it.

To summarize our results from this phase, we established the following design rules:

• Accessibility - no technological or knowledge barriers

• Ability to cope with input ranging from well-intentioned to mischievous due
to wide user range

• Intuitive user interface

4.3 Analyzing user task

As our goal was to create a game, which encourages users to produce pronunciation
data, there are different aspects to be considered. First of all the game needs to
appeal to a large group and over a period of time, so that it runs without being
constantly advertised. Which means that it can neither be too difficult nor too difficult

easy, as extremes probably repel too many users.

18 4. Analysis of Requirements

The task should also be moderately taxing so as to be achievable for many users. taxing

It should not be necessary for the users to have any prior knowledge, or go through
an extended phase of learning, to complete the task. This should then result in an
inherent incentive, since it is not too complicated but moderately difficult.incentive

In summary we want to create a task with the following requirements:

• Moderately difficult

• Moderately taxing without prior knowledge

• Inherent incentive to keep trying

Taking inspiration from the work described in Section 3.2, we established the fol-
lowing task as the core to our system:

Users are presented with a word from the target language and a keyboard comprised
of phonetic symbols. Using these symbols the user is supposed to build a pronuncia-
tion for a word. Since we do not expect the users to know the symbols, he or she can
have the symbol string be read aloud by a speech synthesis software. Comparing
his or her knowledge of how the word is supposed to sound with what is generated
from the chosen keys, the user should then try and find the best representation of
the word.

Listening and comparing is not too challenging. But finding the correct string of
symbols should prove challenging enough. Depending on the kind of symbols on the
keys, representing the phonemes, the user can be aided or hindered. As explained in
Section 2.4 we decided on using the symbols of the International Phonetic Alphabet
(IPA) [9]. IPA or variations of IPA are found in many dictionaries as pronunciations
for each word. This means, that the users might remember seeing the symbols and
at best, have always wanted to know what they mean. By building their own strings
out of these symbols they can now find out, which will be an incentive to try our
game. At worst, the similarity of the symbols to the letters of the Latin alphabet,
makes it easier for the user to make a first guess. The alphabet for the keys is
interchangeable if other representations are more appropriate for a certain language.

4.4 Summary

The most important conclusions of this chapter are the requirements for the system:

• Low cost

• Robust design

• Simplicity

As well as the secondary qualities:

• accessible

4.4. Summary 19

• Intuitive layout of interface and work flow

• able to handle wide variety of input

• No prior knowledge

After establishing these requirements, the next chapter focuses on the design deci-
sions of the interface and the implementation.

20 4. Analysis of Requirements

5. Design

In Chapter 4 we defined the requirements for the system. We then established the
targeted group of users, together with a consideration about motivation, usage, and
availability. We also analyzed the actual task that we can give the users with respect
to difficulty, workability, and incentive. With this information established, the design
process was divided into three distinct phases. In the first phase a rough overview
of how the system is going to look and feel was established. This was visualized to
describe the main points of the systems design. Starting with the general interface
design, decisions about the backend could then be made in phase two. And in the
last phase the more specific design decisions are discussed.

5.1 General Interface Design

The general design idea as shown in Figure 5.1 was a phonetic keyboard with which
the user should transform a given word into a string of phonetic symbols.

As we have discussed in Section 4.3, the expected user has little to no prior knowledge
about phonetic symbols. To help the user building the correct string of symbols,
we add a PLAY button to the interface. This button feeds the string of phonetic
symbols, which are selected at that point, to a speech synthesis program. The
resulting synthesized audio file is then played back to the user. The user must
decide if the audio, generated from his or her selected symbols, matches what he or
she knows to be a correct pronunciation of the given word.

If audio and pronunciation are not similar enough, the user should try to adjust
the symbol string accordingly. To help adjusting the symbol string some buttons
are given to navigate within the string. This is accomplished with the help of
FORWARD and BACKWARD buttons with which to navigate a cursor within the
string of phonetic symbols. To delete a single symbol to the left of the cursor the
DEL button was added.

A user might also choose to ACCEPT or SKIP a given word, if he or she has either
found an apparently correct representation or can not create a good audio feedback.

22 5. Design

Figure 5.1: Sketch of Keynounce user interface

5.2. Backend Implementation 23

The keyboard for the symbols is shown in Figure 5.1 as being divided into two
groups. As we expect users untrained in linguistics, we decided to have the symbols
split into groups whose meaning is easily accessible to everyone.

We also need some kind of tutorial to give first time users a starting point. Giving
no information at the start might discourage some users from trying. Returning
users might also be able to use the tutorial as a point of reference to aspects of the
game, which they do not remember correctly.

5.2 Backend Implementation
We have formulated in Section 4.2 that there should be little to no technological
barriers imposed by the program. Our requirements are:

• accessible on the World Wide Web

• usable for a majority of World Wide Web users

• no additional software for users to install on their hardware

• small demands on the user’s hardware

• graphical user interface (GUI)

• ability to play sounds

• ability to quickly change interface depending on user input

• open source or freeware components to reduce costs

• reduced loading time during gameplay

• database interaction

To meet the requirements of easy access for a majority of World Wide Web users
without additional software installation and making small demands on the user’s
hardware, we looked at what was currently available on the web. What is mainly
used today to create small online games and graphical user interfaces, as well as
dynamic commercials on the Internet are Java [19] and Flash [20]. Both are widely
used and most Internet users have everything that is required already installed on
their machines.

We decided to use Flash and Actionscript, since it is an almost perfect fit to our
needs. Flash was designed to bring moving pictures, sounds and interactivity to
web pages. It supports bidirectional streaming of audio content and supports user
input by mouse and keyboard. The corresponding Flash Player is already installed
on many personal computers, since a lot of motion picture content on the Internet
is provided with Flash.

The chosen synthesizer was eSpeak [21] because it provides fast and easily adapted
text synthesis and moderate quality of speech. The slightly robotic quality of speech
should help the user to accept slight imperfections resulting from a lack of prosody
and missing accentuation. As long as a correct combination of sounds is there, a
user should accept the word as fine. A high quality synthesis would suggest to the
user that the lack of prosody is his fault and he might try to remedy that.

24 5. Design

5.3 Specific Interface Design

Figure 5.2: Keynounce user interface

Following the general design decisions of Section 5.1, we built a specific user interface
which is shown in Figure 5.2. This specific design varies slightly from the design
sketch in Figure 5.1 but the overall design was adopted. This design was established
after some preliminary tests. In this chapter, we discuss the changes and additions
that were made to the design sketch. We also explain why those decisions were made.
The most important part of the finished user interface is the symbol keyboard. As

Figure 5.3: IPA vowel chart

discussed, it is divided into two groups. The division into vowels and consonants
is chosen in light of our premise of untrained users. In the IPA tables the different
sounds are also classified as consonants and vowels and are then mapped according

5.3. Specific Interface Design 25

Figure 5.4: IPA consonant chart

to the part of the vocal tract that creates the sounds. This mapping is shown in
Figure 5.3 and Figure 5.4.

Although this is a good classification for the knowledgeable user, it would need
special explanations to convey the concept to an uninformed user. For this reason
we have decided to arrange the symbols according to their corresponding letters in
the target languages.

As a user without any background in linguistics, has no further clue to what the
symbols stand for, the resemblance of the symbols to the letters of the Latin alphabet
is the only recognizable thing. One of the prerequisites for our interface was that
it needs to be intuitive, so we decided to use this resemblance as a clue to how the
symbols are arranged.

For the vowels we chose to order them A-E-I-O-U and for the consonants we chose
the normal alphabetical order of their associated letters. The buttons where the
symbol itself matches the Latin letter and the expected sound in the target language
thus became the focal points for our layout. The user probably tries out the most
familiar symbols first. If the resulting audio does not meet the user’s expectations,
our explanation of how the symbols are arranged should lead him or her to try the
symbols close to the first guess. The symbols in close proximity were arranged so,
as to represent variations of the same sound. The further two symbols are from each
other, the less similar their sounds. This order was established on a subjective level
with a couple of lab workers. Therefore this should be as intuitive an arrangement
of sounds as possible.

Changes that have been made to the first design sketch include the repositioning of
the SKIP and ACCEPT buttons. They are now found in the lower right corner as
that seemed to be the more intuitive place to search for finishing keys. The text
ACCEPT has also been changed to GOOD to stress that the user marks the current
string as a good representation.

Furthermore the LISTEN button was moved between the two symbol blocks to
shorten movement of the mouse. As can be seen in Figure 5.5, the maximum distance

26 5. Design

Figure 5.5: Longest distances at different positions of LISTEN button

between the LISTEN button and a consonant key is the same at 110 mm, whether
the button is at the bottom or in the middle. When positioned at the lower part of
the interface, the maximum distance between it and the vowel keys almost doubles
from 95 mm to 170 mm. Although the actual distance obviously changes with the
size and resolution of the users screen, the proportions are always the same. It was
an obvious choice to move the button to a central position, since we expect the
vowels to be more problematic to get right. This change does make the interface
less strenuous to use in longer sessions.

Figure 5.6: Highlighted SHIFT button

Next to the button for listening to the current string, another button was added.
Preliminary testing showed, that fine tuning the symbol string resulted in a cum-
bersome repetition of add - listen - delete. This is due to the fact, that the users
have found an approximation very quickly, but they were not satisfied with it. To
get it just right, mostly one or two symbols had to be replaced. But to get the right
nuances, a user sometimes has to listen to the sound of two or three versions alter-
natly and repeatedly. To alleviate this procedure the SHIFT button was installed.
This button can be toggled on screen as seen in Figure 5.6, or held on the physical
keyboard.

Clicking on a symbol while having activated SHIFT results in the instant addition
of that symbol to the string and playing of the resulting audio. The symbol itself
is temporarily added to the string at the left side of the current cursor position.
The symbols are not added permanently. So different symbols can be tried with
the current string in rapid succession. As a bonus the button also helps to get a
feel for the sounds. The vowel sounds can be played by themselves. In case of the
consonants a vowel has to be added first for the synthesizer to create a recognizable
sound.

5.3. Specific Interface Design 27

After our usability tests in the lab, we added a QUIT button to the interface. Some
of the users wanted to end a session prematurely and still get the results for the
finished words, so they repeatedly hit either ACCEPT or SKIP. Both cases can
change the data, that we collect. By accepting unfinished words, the users drop
false data into the database. To skip over words does not seem that problematic,
but might pose problems in the future, when skipped words might be culled from
the data as suggested in Chapter 9.

Below the option to quit the session, we have installed a countdown that shows the
user how many words he or she has already finished and how many are still left in
the session. This might incite a user to finish one or two more words, since they are
the final ones.

Figure 5.7: Tutorial in Keynounce

As stated in Section 5.1, a tutorial was implemented. It shows prominently above
the standard interface at a user’s first interaction with the system. It can be seen in
Figure 5.7. For a returning user, the tutorial is automatically hidden, but he or she
can choose to have a look at it. The tutorial gives hints on how to use the interface
and the discussed part of the interface is highlighted with a red ring around it. To
the right of the screen, the user can switch to the next hint or turn the tutorial off.
Once the tutorial is turned off, everything is hidden and only the button to turn
it back on stays on the interface. With that, the user can always go back to the
tutorial and refresh his or her memory about certain aspects.

Since this experiment would be mainly based on the help of friends and aquaintances,
we tried to connect with social networks to enlarge the potential userbase. For that

28 5. Design

we just added the Facebook LIKE button and Google’s 1+ button. With these, our
initial users have an easy way of propagating our experiment to their friends. This
might result in more users.

Figure 5.8: Welcome screen in Keynounce

Another adjustment to the interface was to create a more complete feeling with a
start screen and a final screen. The screen at the beginning, as shown in Figure 5.8,
allows a choice between the two available languages German and English and ex-
plains again why this game was created. It also features a ranking system that shows
the names of participants and how many words they have submitted. This creates
an incentive for the players since they either want to see their name to appear in
that top 10 list or because they reminded of what effort other people put in.

The final screen (Figure 5.9) lists the submitted strings of the current player. It also
shows the reference string as provided by the GlobalPhone dictionary and the top 3
submissions by other players. The top 3 are chosen by the simple way of counting
the number of matching strings for one word. The string that was submitted most
often by all players is the number 1 seat. All these strings can be listened to by the
player and are not rated in any way by the program. This provides the player with
feedback to learn from. He or she can decide if other versions submitted either by
the reference or other players were superior to their own and why. If users deem all
other versions to be inferior to their own, they might feel motivated to submit more
words.

By not making any judgments ourselves, we keep the game clear of too much guiding
influence. Both the reference string and the top 3 variants are stressed to be just
variants that somebody else thought were ok. We leave it to the players to compare

5.3. Specific Interface Design 29

Figure 5.9: Final screen in Keynounce

30 5. Design

and draw their own conclusions. Since the idea of the game was to gather information
about unknown or little known languages, we might not even be able to judge new
entries in the future except on how many other users submitted the exact same
result. At the current stage we know exactly what the established answers are, for
all words we have chosen. It would therefor be possible to give exact evaluations for
a specific user’s input. But this is only possible, because we use words from two well
documented languages. Implementing some kind of scoring, accessible to the user
during the experiment, based on established results would compromise our results
for future work with undocumented languages.

5.4 Summary

In this chapter we have presented our preliminary ideas for the design of Keynounce
and it’s basic functionality. Afterwards, in compliance with the requirements pos-
tulated in Section 4.2 our implementation choice are explained. They are in short:

• Adobe Flash and Actionscript

• eSpeak as synthesizer

• Arrangement of IPA symbols (vowel and consonant placement)

• Userfriendly placement of buttons

• Tutorial placement

• Integration of facebook and google+

• Welcome screen with ranking

• Final screen with feedback

After making these implementation choices, we are explaining in the next chapter,
what experiments we did and their success.

6. Experimental Setup

In this chapter we describe two experiments we set up to gather data with Key-
nounce.

First of all we tried setting up a reduced version of Keynounce with Amazon’s
Mechanical Turk platform. It is a very quick way to reach a large userbase at very
affordable prices. This approach can be reviewed in Section 6.1

After mTurk we used the full version of Keynounce and advertised the next ex-
periment with friends and colleagues. While definitely cheaper than mTurk, this
approach is comparatively slow. More detailed information can be found in Sec-
tion 6.2

The conclusions for all experiments in this chapter are summarized in Section 6.3

6.1 Experiment on Amazon Mechanical Turk

The experiment on Amazon’s Mechanical Turk was set up on 10 May 2011. We used
the rather limited requester website provided by Amazon. This was due to the fact,
that the more advanced forms to create HITs by API were barely documented, at
that time. Through the requester website we created a short document (Figure 6.1)
detailing to the turkers that we wanted them to transform two written words to their
phonetic spelling. We also gave some hints on how to complete the task. They were
then required to click on a link opening another tab with the Keynounce website.
This was necessary because Amazon had made it impossible to use external web
pages through the requesters website.

The Keynounce version used in this experiment lacked some of the gaming qualities,
that we discussed in Section 5.3. More specifically the following parts had been
removed from the interface:

• Start Screen

• Tutorial

32 6. Experimental Setup

Figure 6.1: HIT on Amazon Mechanical Turk

• Skip Button

• End Button

• Social Network Buttons

This was done, because the HITs in mTurk are supposed to be short, clear and to
the point. We had given all the hints on the starting page of the HIT itself, which
could be read by the turkers before starting the task. The buttons to prematurely
end the session or skip a word were removed, because this was not an option, we
wanted to give the turkers. The same was true for the social networks.

Additionally, the final screen was modified to show a short“Thank You”message and
an authentication code for later verification with mTurk. The turkers were supposed
to paste this code into an input field on the starting form of the HIT. With this
authentication we were able to match the user in our database to the turker and
could thus grant or reject his or her work. This was necessary to verify, that the
turkers had actually done any work.

As explained in Section 1.2, we have picked 100 random words from the English
CMU dict. Since the requester can chose in advance, we decided to get 10 individual
answers for each word and thus 1000 phoneme strings in total. This number was
picked, since it offered a good first impression on the work of the turkers without
taxing our monetary resources overmuch.

6.2. Free Game Experiment 33

We created 50 HITs with 2 words each. Amazon services also guaranteed, that a
single user could not work on two assignments of an identical HIT. This means, that
users could finish any number of words between 2 and 100 without being able to
work on the same word twice.

Each assignment was awarded with $0.03 totaling to $15.00 and $2.50 in Amazon
fees.

Since we did not use the more advanced API of the Mechanical Turk services, we
had to approve assignments manually. We did not simply approve every finished
HIT, because a large number of turkers refused to do any work and just gave back
the authentication code. This meant we had to supervise the results more closely
than expected.

As can be seen and is explained in the results (Section 7.1), this experiment did not
produce good results.

6.2 Free Game Experiment

After the mTurk experiment did not meet our expectations about the quality of
the results, we decided to engage volunteers in our next experiment. To engage the
users interest, we used the full interface, as described in Section 5.3. We expected
volunteers to have their focus on helping and maximizing their per minute output.

Differing from the mTurk experiment, we decided to split the experiment and provide
users the choice between German and English words. This was motivated by the
fact, that most of our users first language is German. Due to that we picked another
100 random words from the German GlobalPhone database. We also added a choice
of language to the starting screen. The language would then be set for a batch of
words and could be changed after each batch.

The batch size was increased from two words in the mTurk experiment to five for the
volunteers. This way users would be implicitly tasked to finish at least five words.
To alleviate this, we gave them the option to skip single words or abort a batch
prematurely. This way we hoped to get more results from users, who would just
“try it once”.

We asked colleagues working at the lab, friends and acquaintances to help with this
experiment. We also encouraged everyone to tell other people about Keynounce.
This aspect was helped by the social network buttons we implemented. We had
21 Facebook “likes” and 5 “1+” from Google+. Overall this resulted in 224 partici-
pants.

As with the mTurk experiment we had no real safeguards against trolling or other
abuse of our experiment. With the idea, that Keynounce would one day be an
independent web application to generate data, we reasoned that there would be
some noise anyway. As discussed in Section 4.1 the system is able to handle this.

We only interceded once, when someone tried to get “A.Hitler” on the leader board
by just submitting one-phoneme words. We did this to prevent other volunteers
from taking offense. Other than that we accepted all input and let the experiment
run unsupervised.

34 6. Experimental Setup

6.3 Summary

In this chapter we described the two experimental setups we have built, as well as
the different configurations we had to apply to the interface. The results of these
experiments are presented and discussed in detail in the following Chapter 7.

7. Results

In this chapter we delineate the differences of the experiment with mTurk and the
voluntary Keynounce experiment as described in the previous chapter. We also
analyze in detail the results of the voluntary Keynounce experiment.

7.1 mTurk

One of the main differences between the mTurk and the volunteer experiment was
that the mTurk experiment had a fixed amount of results we would accept from the
mTurk workers. This was due to the fact, that we payed for the work and specified
a limited number of results per word before the experiment. The volunteer game
experiment had no fixed number of entries per word and was more of an open call.
We did not know, how many participants we could expect. So we did not restrict
their number in advance.

The mTurk experiment was also much faster in getting results. We initiated the
experiment on May 10th and stopped on May 23rd with 387 approved and 531
rejected assignments, as can be seen in Figure 7.1. These assignments generated
1,902 words in total but 1,062 of these where spam. Most of the worthwhile input
was generated on days 1-3, 7 and 8. We did not get any attention on days 4-
6, probably because it was a weekend. The surge of spam answers on day 2 was
probably a testing of our assignments by malicious users through dummy or robot
accounts. After these were rejected, the spam did decrease somewhat.

In comparison the volunteer experiment which was started on 10/25/2011, generated
1,595 words until there was a snapshot taken on 04/17/2012. The participation is
depicted in Figure 7.2. After a month of being online, 89% of the final number
of words had been generated. Some people learned of the experiment later on, or
returned to it, but the significant amount of work (1,417 words) was done within 30
days. This period of activity could probably be extended by promoting Keynounce
over a longer period of time. Either that, or publishing Keynounce on a more
frequented website would generate a lot more input.

There was also a difference in the average time spent on completing the pronunciation
for a word, as can be seen in Figure 7.3. With an average of 74 seconds, the amount

36 7. Results

Figure 7.1: Number of words per day by Turkers

Figure 7.2: Number of German and English words per day by volunteers

7.1. mTurk 37

Figure 7.3: Comparison of amount of time needed per word

of time Turkers expended on a word was significantly smaller than the 113 seconds
that volunteers needed. Even more so, because with the volunteer experiment, only
the time to generate the word itself was recorded. The mTurk website did not only
record the Keynounce process but the time it took to finish the HIT. The average
time spent on the Keynounce website by the Turkers was 53 seconds, not even half
as long as the volunteers.

Since neither the Turkers, nor the volunteers as a whole had any previous experience
with the interface or pronunciation generation, the difference is not due to higher
skills on the Turkers part. The main incentive for the Turkers was getting payed.
With the micropayment system of mTurk, the main focus seems not to be on gen-
erating the best possible answer, but rather to get an adequate answer as fast as
possible. This is a feasible approach, when dealing with simple answers like ’yes’ or
’no’. But in our case, the first recognizable pronunciation seldom is the best one
possible. The incentive of the volunteers is to help the project or its creators and
maybe have some fun doing it. Their incentive is not losing value, the longer they
experiment with a single pronunciation. And finding the best sounding solution
might be rewarding on its own.

This means, that the goal of the experiment and the incentive offered to Turkers
exclude one another. Keynounce was created in way, that people could use a trial
and error system to find a near perfect solution. But this takes time and effort.
By paying minimal amounts of money for the tasks does get people involved in
Keynounce. But the majority of Turkers has no interest to spend a lot of time on
it. At least not for the amounts of money that we offered.

Although there are exceptions. One Turker did all HITs that were offered and he
experimented a lot with the interface. The different pronunciations that our system
logged from his account showed, that he even tried to form whole sentences, just
to see how it worked. He commented most of his actions in the feedback panel.

38 7. Results

This did not help with our experiments, but showed the allure of the interface to
interested people. Some of his comments were:

I like when a word is ok, but then gets better by adding another symbol
to modify the vowel sound.

I found the symbol that makes the ’th’ sound faster than a couple months
ago. I had forgotten that there was a symbol for it, but I remembered
what a hard time I had trying to make the sound. It is that thing in
between the ’d’ and the ’f’ (I think. It looks like a backwards 6 with a
little mark on it.)

In summary the mTurk experiment yielded a lot of information, but a couple of
points made this line of experiments unsuitable for our purposes. These points are:

• High amount of spam (55% unusable input)

• Fast but sloppy (1902 pronunciations within 5 days)

• No incentive to make an answer “the best answer”

These three points, but the last one in particular, made the mTurk experiments
unsuitable. It would be possible to devise anti spam procedures to clean the results.
But what we need from our test subjects is the willingness to search for the best
solution, even if they have already found an understandable solution. This is at
cross purposes with the needs of the Turkers, since they try to finish as many tasks
as possible, in as little time as possible. This is the reason why we abandoned the
mTurk approach and concentrated on voluntary participants to our experiments,
even though that made it slower.

In the next section, we present the results of the volunteers and discuss them in
detail. Where possible, we compare the volunteer data with what could be salvaged
from the mTurk experiment.

7.2 Voluntary Keynounce

As mentioned in the chapter before, we collected pronunciations for 1.595 words in
from 10/25/2011 to 04/17/2012. 89% of these pronunciation where collected within
the first month.

Before we go into more detailed explanations of the collected data, we need to
establish some terms:

Session In the voluntary Keynounce experiment a session is a sequence start-
ing with the welcome screen, where a language can be chosen by the
user. As background activity the interface records the chosen nick-
name of the user and creates a session ID. It then progresses through
a maximum of five words of the chosen language, for which the user
should build pronunciation strings.

7.2. Voluntary Keynounce 39

The words are chosen at random, but words with fewer pronunciations
get picked more often. Every time the user listens to a string or
commits a string as a good word, the sequence, as well as the time and
the session ID are stored in the database. Either after five words, or
when the user uses the “end” button, a final screen is displayed, which
shows the results as described in Section 5.3. This screen finalizes a
session by terminating the ID.

Phoneme
Error Rate

The Phoneme Error Rate (PER) is the percentage of wrong phonemes
in a given phoneme string. It is calculated by comparing the hypothe-
sis strings with the reference string from either the English or German
reference dictionary. This is done with SClite [22], which is part of
the NIST Scoring Toolkit [23]. SClite aligns the hypothesized strings
with the reference string and analyzes the differences.

It is normally used for whole texts, which are then compared on a word
level. For our purposes we have split the strings into single phonemes
by adding spaces after each phoneme. Thus SClite does not compare
word errors but phoneme errors. So the PER is the percentage of
wrong phonemes in the hypothesis string. A peculiarity of the PER
is its ability to become larger than 100%. That is the case, when the
hypothesis has more phonemes than the reference.

As we have expected from a voluntary userbase, we initially had quite a large number
of volunteers who tried the game. This is depicted in Figures 7.4 and 7.5 as the
orange lineplot. 122 different people for the German language and 45 for English
took a look at it. The number of participants then plunged to 30 and 17, respectively,
for the second session. Here our expected user groups (Section 4.2) of Onlookers and
Gamers separate. While the Onlookers only tried one session, the Gamers tried a
second or even more sessions. The numbers keep dwindling to just 4-8 German HiG
and 3-4 English HiG who stay with the experiment for more than five sessions.

7.2.1 General results

As can be seen in the blue lineplot of Figure 7.4 of the German language results,
the users learn very quickly. After the initial session the mean PER is 45.86%. For
those users who look at the results screen and then start a second session, the mean
PER drops to 35.33%. Until session 8 the PER has declined to 25.80%. At this
point all Gamers have dropped out and only the HiG are left. The mean PER then
becomes more erratic, since there are so few users left.

The green lineplot visualizes the median time it took all users to build a single word
in the German language results. It starts out with 125.4 seconds per word which is
almost 10.5 minutes to a session of 5 words. In the second session there already is a
reduction of 30 seconds per word (94.4 s/word, 7.9 min/session). Those users who
stay with the game after two sessions apparently become a lot more familiar with
the keyboard and what sounds the symbols stand for. The time needed to produce
the lowest PER of 25.80% is 41.8 seconds per word or just a little under 3.5 min per
session. It also gets more erratic with only a few HiGs playing on, but in general
keeps going down.

40 7. Results

Figure 7.4: PER, time per Word and number of users per session with German
words

Figure 7.5: PERs per session with English words

7.2. Voluntary Keynounce 41

Virtually the same can be seen in Figure 7.5 for the English users (blue lineplot).
The mean PER starts out at 46.33% in the first session and 35.34% in the second
session. Then it drops to about 27% in session 4 and 6 and becomes increasingly
erratic afterwards.

The time per word measurements of the English users also closely resemble those of
the German users. They start out with 84.4 seconds per word, which is 7 minutes
per session. The median time goes down to 57.5 seconds per word or 4.8 minutes
per 5 words in the second session. The lowest PER of 27% in sessions 4 and 6 are
archived in a little under 3 minutes or 33.4 seconds per word. In session 5 the users
finished 5 words in a median time of 2.6 minutes or 31 seconds per word, but the
PER went a bit. With only the HiGs, it also turns erratic and even starts going up
with just 4 players remaining.

We have used the median time in Figures 7.4 and 7.5 since it protects the plot from
outliers. Some users probably left the game open for a while, and finished the session
later. One user needed 3 hours to finish a session, another a little under 2 hours.
These outliers do not have an impact on the median which results in a more reliable
plot.

Figure 7.6: Arithmetic mean and median time needed for single words in first session

The reason for the initial rise and subsequent decline of the PER probably is a
growing familiarity with the keyboard. Initially most users do not know what each
symbol stands for. After some trial and error they start to understand what they
are supposed to do and how to do that with the given keys. Better understanding
leads to faster results. This can be seen in the decline of time used per session in
general. We can even show it on a per word basis for the first session illustrated in
Figure 7.6. The Figure shows the arithmetic mean time (blue lineplot) as well as
the median time (red lineplot) needed for each word, in every user’s first session.
On average 373 seconds (over 6 minutes) are needed to find the first word. After
that 114 and 120 seconds for the next two words. The last two words are then found
in 99 and 89 seconds. The median is markedly lower. The median user needs 255

42 7. Results

seconds or 4.25 minutes to complete the first word. The following two words are
found in about 89 seconds. For the last two the median user only needs 73.5 and 64
seconds.

As before we have used the median and to compare the arithmetic mean of the
timespan it took the users to complete pronunciations. The median is again lower
than the arithmetic mean, since it ignores single datapoints where users needed
unusually long. As before we assume that these outliers are created, when users get
distracted and leave the game open in their browser for a while.

Unfortunately the data for the first session does not include all participants of the
study. Some participants had their computers configured to delete cookies, which
made it impossible to track, which words where generated in which session. The
data of these participants has been excluded for this Figure.

The median time needed for the last words in the first session is below the median for
the second sessions, as mentioned above. This can be explained as follows. After the
first session, the users can evaluate their own solutions and compare them against
the reference pronunciations and the three most frequent solutions of all other users
for this word. Those users that continue with a second session afterwards are, on
the one hand, more familiar with the keyboard. On the other hand they might have
seen on the result screen, that better solutions are possible, which might lead to a
little more time spent on the fine tuning. Another influence might be, that users are
more inclined to spend time on each word, if he or she did not start the session by
spending 6 minutes on the first word.

7.2.2 Results after postprocessing

In this section, we discuss more specific information about the benefits of Keynounce.
So far we have shown, that there is improvement in the performance of users in
general and in a specific group of users in particular. We only evaluate the German
results, since we did not gather enough English data, to present valid information.
We are now showing what can be gained from the crowd data, by using a simple
tool.

nBest-lat-
tice

nBest-lattice is part of the SRI Language Modeling (SRILM) toolkit
[24]. It constructs a word lattice from all hypotheses and extracts the
path with the lowest expected word error. As with SCLite we use our
phonemes as words, by adding spaces after each phoneme.

PER all PER nBest users, who processed # of users

34.7 % 22.7 % everyone 122

Table 7.1: PER over all words from German users in different word ranges

To begin with, we use SCLite to calculate the PER for all hypotheses that we
gathered, matched against their reference pronunciation. The result is, as shown in
Table 7.1, that 34.7% of the phonemes differed from their reference. Then we process

7.2. Voluntary Keynounce 43

the hypotheses for each word with nBest-lattice first, to get a better hypothesis. This
results in a PER of only 22.7% which is a relative improvement of 34.6%.

An example of nBest-lattice’ progress is shown in Table 7.2. The reference and
hypotheses are depicted in the internal alphabet of espeak, which is based on Kir-
shenbaum’s representation of IPA in ASCII characters [25].

reference: d O n @ r s t A: k

user hypotheses PER nBest hypothesis PER

d O n @ r s t a g 25 %
,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

d O n @ r s t A: g 12.5 %

d o: n @ r s t a g 37.5 %
d O n E r s t A: g 25 %
d O n @ r s t a g 25 %
d o: n E: r s t A: g 37.5 %
d o: n n 3 * S t A: g 75 %
d O n 3 s t A: g 25 %
d O n @ s t A: k 12.5 %
d O n 3 r s t A: g 25 %

Table 7.2: Hypothesis calculated with nBest-lattice from user’s hypotheses

It can be seen, that only one of the hypotheses has a PER of 12.5%. Every other
hypothesis has 25% PER or more. A simple vote of the most common hypothesis
would have chosen “d O n @ r s t a g”, since this was the only hypothesis that has
appeared twice. The nBest-lattice tool finds a hypothesis, which was not given in
that form by the users. The calculated hypothesis has a PER of 12.5%, which is
better than 89% of the other user proposed hypotheses. The only mistake, which
remains in the calculated hypothesis is at the last phoneme position. Since only one
of the user proposed hypotheses has the correct phoneme, the nBest-lattice tool had
too little data to find the correct phoneme for that position.

We will call PERs that where calculated using the nBest-lattice tool nBest PER.

As outlined in Section 4.2, we expected users to need one or two sessions to get
familiar with the game. This has been confirmed in Section 7.2.1, where we have
shown, that it takes users a lot more time to complete the first session than any
other session. We can further substantiate that by calculating the PER for all users
who did finish just one or two sessions.

Table 7.3 shows, the difference between Gamers and the Onlookers. The fist line of
the table gives the PER and the nBest PER for the 92 users who have submitted 5
words or less. This means, everyone is included, who stopped after the first word, up
to those that finished the first session. This group archives a PER of 42.7% and an
nBest PER of 37.6%. The second line shows the 45 users who have done 4 words or
less. They have either abandoned the game, or skipped words. The achieved PER
for this group is 54.5% and about the same when calculated with nBest-lattice. This
already shows, that those users who do not have enough incentive to finish the first
session properly, are in general not contributing worthwhile input.

44 7. Results

PER all PER nBest Users, who processed # of users

42.7 % 37.6 % 5 or less words 92
54.5 % 54.6 % 4 or less words 45
34.3 % 29.8 % 6 to 10 words 15

40.6 % 29.4 % 10 or less words 107

Table 7.3: PER over all words from German users who worked on one or two sessions
(5-10 words)

The PER significantly decreases for those users who have done a second session or
at least 6 but not more than 10 words. These 15 users produced a PER of 34.3%.
The result from nBest-lattice is 4.5% absolute lower. This means that even though
there are fewer hypotheses to work with, they have more phonemes in common for
nBest-lattice to find.

To conclude this, the last line in Table 7.4 shows the overall PER for users who did
any amount of words within the first two session. The PER is at 40.6% and the
lowest nBest PER is at 29.4%. But as we have seen in the preceding results, the
input from users not finishing the first session is mostly of no interest. In general
the results of users that try a second session are much more reliable, but still not as
good as the PER over all user input.

PER all PER nBest Users, who processed # of users

31.6% 21.6% 10 or more words 25
31.2% 20.9% 15 or more words 14
31.0% 20.8% 20 or more words 12
32.6% 25.4% 100 or more words 4

Table 7.4: PER German global

After finishing the first two sessions the Gamers slightly reduce the PER but show
a significant decrease in the nBest PER, as can be seen in Table 7.4. Those that
did more than two sessions have a PER of 31.6% which is an absolute 2.7% better
than those users, who stopped after the second session. But the nBest PER drops
to 21.6% which is 8.2% better. Users who did a fourth or fifth session still have a
slight decrease in both PER and nBest PER to a minimum of 31% and 20.8%.

The 4 HiGs that did more than 100 words have a slight increase of 1.6% in their
PER but a rather larger increase of 4.4% in the nBest PER. This is due to the fact
of the significantly reduced number of hypotheses per word, generated by those four
users. That the PER does not further drop with training might imply, that just
showing the final screen with the results has its limits. Users who have looked often
enough at that screen might not be as interested in the results any more. In future
work it might be a goal to find some further means to let users improve themselves
even after they have gotten into some kind of routine.

7.3. Summary 45

7.3 Summary

In this chapter, we have presented and discussed the results of our Keynounce ex-
periments.

First we have discovered, that using Amazon’s Mechanical Turk services does not
really work with our game. Most mTurk users do not like to spend more time than
absolutely necessary on any given task. Also there is the problem of high spam
content, which in itself does not pose a problem. The unprofitable data could and
in the future probably must be filtered, but coupled with pending payments the
answers have to be either reliably good or the time saved to create linguistic data is
spent on garbage control.

A second general fact is, that we were able to get a lot of input from voluntary
users, but it took more time and effort, than just using mTurk services. On the
upside, we did not have to guard against excessive garbage input, since we did not
pay for anything.In future experiments Keynounce would have to be posted on a
more highly frequented website. This would generate more input without being
dependent on having a lot of friends.

More importantly for our work, we proved, that Keynounce works. It can create
pronunciations for words which are quite good. Without much postprocessing the
results can be enhanced even further. It was also quite clear, that Keynounce was
able to train the users to get to the right spelling. This feature might be a possible
enhancement in the future.

46 7. Results

8. Conclusion

We started the Keynounce project with the goal of proving, that unskilled and
anonymous people can help build a high quality pronunciation dictionary at low
cost.

Our experiments show, that this is the case. Given the right kind of incentive in pro-
viding a gamelike experience, anonymous users will help for free. The experiments
uses the human ability to compare synthesized speech with what the user knows to
be a right articulation. As the human brain is able to decide relatively accurate,
if slight differences are based on the synthesizer or the chosen pronunciation, most
users can create good results.

The results of each individual user are not by any means perfect. This is due to
the fact that we have no way to decide if the person is linguistically trained in any
way, has hearing or speaking disabilities or is simply not willing enough to build
the best result he or she could archive. Since our goal also was, to establish a way
to create dictionaries for little or unknown languages, in the future we might not
even be able to weed out imperfect results apart from obvious garbage, even if we
wanted to. But since our experiment makes use of “the crowd”, willing users on the
Internet, one can expect a large group of users for almost every language. Even if
the potential userbase on the Internet for a particular language is not high enough,
the Keynounce project is simple enough to carry it on portable devices to speakers
of every language.

Using the power of crowdsourcing for our benefit, we were able to calculate pro-
nunciations out of the sum of user inputs, that were as good or even better than
every single user input by itself. This is due to the fact that crowd answers tend to
agree an a large percentage of the answer, so the difficult parts of the pronunciation
are easily identified. If enough user input is available, the contested parts of the
pronunciation can be calculated by what a majority agreed upon. If there is enough
input, it might even be possible to calculate two or more pronunciation variations
due to dialect or regional differences.

Our project also showed, that it might be easier to get people to help, when contacted
via a micropayment system like Amayons Mechanical Turk. The disadvantage of

48 8. Conclusion

having to spend money on the answers is alleviated by the speed with which the
results are gathered. But it showed in our experiments that micropayment workers
in general are not overly fond of investing a lot of time in fine tuning answers. This
was at odds with what we needed users to do. This problem might be worked out
by training and chosing the workers better and by investing more money. But the
simple approach of just posting the problem and getting the answers was by far
more effective without any monetary incentive. Money seemed to put the users on
a tight timetable, which was counterproductive to our goals.

In summary our project works. Keynounce is able to invite people to help and offers
them enough incentive to produce a reasonable amount of results. The interface is
intuitive and simple so that there is next to no work involved in training new users.
And finally the quality of the results is high enough to calculate a good quality of
pronunciations, provided there is enough input.

9. Future Work

For future works with Keynounce some ideas and different approaches have presented
themselves during the course of this work. Although they would be too much to
implement in this work, they are definitely worthwhile pursuing in future Keynounce
projects.

This work has shown, that a crowd of users without prior linguistic knowledge can
build pronunciations for words known to them. The sum of the given pronunciations
can be processed without much effort to yield a very accurate pronunciation. In the
future these filtering methods should be explored in more detail. It would be useful
to find a threshold for the amount of user input that is needed, to build high quality
results with n-best lattice.

To make more stable pronunciations and to make Keynounce more versatile, some
form of culling of bad words should be found. This could easily be archived by giving
users the option of tagging a word as ’problematic’. Words with high amounts of
these tags could then be filtered out. Adding this feature to Keynounce would
make it possible to feed words into Keynounce unsupervised. It would then be
possible to either crawl the Web for words or have other programs provide them
for Keynounce. Once users have worked on these words and provided a sufficient
amount of pronunciations, the words and the resulting pronunciation could be given
back to the provider of the input words.

It must also be examined if there is an advantage of providing help for the users.
For example: Keynounce could provide information about what other users propose
as a solution for the current word. Especially parts of the pronunciation that a
large amount of other users have agreed upon could be provided. Users could then
accept this and use their time to find the best solution for the disputed parts of the
pronunciation.

As a further incentive to play, Keynounce could provide users with a sandbox area.
Some users already ignored the input word that they were supposed to pronounce
and played around with Keynounce’s possibilities. They even build pronunciations
for whole sentences. To keep this kind of exploration out of the main pronunciation
data, a sandbox area would work great. Maybe a function to build custom MP3

50 9. Future Work

files from the user generated input would appeal to the users. To still gather infor-
mation from this random play area, Keynounce could ask users to translate their
pronunciation into plain text.

In Section 7.2.1 we showed, that users need some time to adapt to the Keynounce
interface. This process could be shortened and thus the quality of the resulting
data improved, by enlarging the tutorial. It must be determined if Keynounce offers
enough incentive to play, if discovering the interface is taken out of the experience.
Maybe it would be enough to guide users through their first batch of words, by
showing them the results of other users after each word and not just after all words
have been completed.

So far we have given the users a keyboard with the appropriate set of IPA symbols
for the chosen language. To open Keynounce for less known languages, it could
be useful to explore the possibility of a selflearning Keyboard. For that simply all
IPA symbols could be displayed. By letting the users use every symbol there is,
they would generate data on which keys are more likely for the given language.
The Keyboard could then dynamically adjust itself to the appropriate keyset for
this language by continually shrinking the unused keys and enlarging the frequently
used ones.

It would also be interesting to be find out, if pronunciation variations for a word
could be provided by a large number of users. Keynounce would have to decide not
only on which is the best answer that can be filtered out of the sum of inputs. But
it would also have to find the second and third best answers and if they are common
enough, they might be a pronunciation variation.

Also with the Rapid Language Adaptation Toolkit (RLAT) [2] there already exists
a powerful tool which aims at reducing the human effort in building speech process-
ing systems for new languages and domains. Its innovative tools enable novice and
expert users to develop speech processing models, such as acoustic models, pronun-
ciation dictionaries, and languages models, to collect appropriate speech and text
data for building these models, and to evaluate the results. A possible way to inte-
grate Keynounce into this existing system would be, to automatically pipe all words,
which are gathered through the webcrawling system of RLAT, into Keynounce. The
words are thus presented to the community for dictionary creation. Thus an ever
evolving dictionary for all possible languages could be build.

Bibliography

[1] “Cognitive Systems Lab.” http://csl.anthropomatik.kit.edu//.

[2] “Rapid Language Adaptation Toolkit.” http://csl.ira.uka.de/rlat.

[3] T. Schultz, “GlobalPhone: A Multilingual Speech and Text Database Developed
at Karlsruhe University,” in Proceedings of the ICSLP, pp. 345–348, 2002.

[4] T. Schultz and A. Waibel, eds., Das Projekt GlobalPhone: Multilinguale
Spracherkennung, vol. Computers, Linguistics, and Phonetics between Lan-
guage and Speech. Proceedings of the 4th Conference on NLP, Fakultät für
Informatik Institut für Algorithmen und Kognitive Systeme (IAKS) Institut
für Theoretische Informatik (ITI), 1998.

[5] J. Howe, “The Rise of Crowdsourcing,” Wired Magazine, vol. 14, 06 2006.

[6] E. E. Arolas and F. G.-L. de Guevara, “Towards an integrated crowdsourcing
definition,” J. Information Science, vol. 38, no. 2, pp. 189–200, 2012.

[7] W. Tay, “Linguistic Wonders Series: The International Phonetic Alphabet.”

[8] D. V. Compernolle, “Recognizing speech of goats, wolves, sheep and ... non-
natives,” Speech Communication, vol. 35, no. 1-2, pp. 71–79, 2001.

[9] I. P. Association, Handbook of the International Phonetic Association. Cam-
bridge: Cambridge University Press, 1999.

[10] “Wikipedia, the free encyclopedia.” http://www.wikipedia.org.

[11] P. Spotts, “Crowdsourcing science: how gamers are changing sci-
entific discovery.” http://www.csmonitor.com/Science/2011/1005/
Crowdsourcing-science-how-gamers-are-changing-scientific-discovery, 2011.

[12] Z. Popovic, “Foldit.” http://www.centerforgamescience.org/site/games/foldit.

[13] Z. Popovic,“Center of game science.”http://www.centerforgamescience.org/site/.

[14] L. von Ahn, “Games with a purpose,” IEEE Computer, vol. 39, pp. 92–94, 2006.

[15] L. von Ahn, R. Liu, and M. Blum, “Peekaboom: A game for locating objects
in images,” in In ACM CHI, pp. 55–64, ACM Press, 2006.

[16] M. Davel and E. Barnard, “The efficient generation of pronunciation dictionar-
ies: Human factors during bootstrapping,” in 8th International Conference on
Spoken Language Processing, 2004.

http://csl.anthropomatik.kit.edu//
http://csl.ira.uka.de/rlat
http://www.wikipedia.org
http://www.csmonitor.com/Science/2011/1005/Crowdsourcing-science-how-gamers-are-changing-scientific-discovery
http://www.csmonitor.com/Science/2011/1005/Crowdsourcing-science-how-gamers-are-changing-scientific-discovery

52 Bibliography

[17] J. Kominek and A. W. Black, “Learning pronunciation dictionaries: Language
complexity and word selection strategies,” in Proceedings of the Human Lan-
guage Technology Conference of the NAACL, pp. 232–239, 2006.

[18] “What is a troll.” http://kb.iu.edu/data/afhc.html.

[19] Oracle, “Java website.” http://www.java.com/de/.

[20] Adobe, “Adobe Flash.” http://www.adobe.com/de/products/flash.html, Jan-
uary 2011.

[21] jonsd, “espeak text to speech synthesizer.” http://espeak.sourceforge.net/, Jan-
uary 2012.

[22] “SClite.” http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm.

[23] “NIST Scoring Toolkit.” http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/
sctk.htm.

[24] A. Stolcke, “SRILM – An Extensible Language Modeling Toolkit,” in Proc. Int.
Conf. Spoken Language Processing (ICSLP 2002), 2002.

[25] E. Kirshenbaum, “Kirshenbaum ASCII IPA.” http://www.kirshenbaum.net/
IPA/.

[26] Adobe, “Adobe Actionscript 3.” http://www.adobe.com/devnet/actionscript.
html, June 2011.

[27] Canonical, “Ubuntu Server 10.04 Long Term Support.” http://www.ubuntu.
com/, January 2011.

[28] H. A. Engelbrecht and T. Schultz, “Rapid Development of an Afrikaans-English
Speech-to-Speech Translator,” in Proceedings of International Workshop of Spo-
ken Language Translation, 2005.

[29] P. Ipeirotis, “Mechanical Turk: The Demographics.” http://www.
behind-the-enemy-lines.com/2008/03/mechanical-turk-demographics.html,
March 2008.

[30] Oracle, “PHP.” http://www.php.net/.

[31] T. Schultz, A. W. Black, S. Badaskar, M. Hornyak, and J. Kominek, “Spice:
Web-based tools for rapid language adaptation in speech processing systems,”
in Interspeech, 2007.

[32] S. Young, “Large vocabulary continuous speech recognition a review,” IEEE
Signal Processing Magazine, vol. 13, no. 5, pp. 1–4, 1996.

[33] “History of IPA.” http://en.wikipedia.org/wiki/History of the IPA.

[34] “Php 5.” http://www.php.net/.

[35] “Micropayment.” http://en.wikipedia.org/wiki/Micropayment, February 2012.

[36] “Amazon Mechanical Turk.” http://aws.amazon.com/mturk/, December 2010.

http://kb.iu.edu/data/afhc.html
http://www.java.com/de/
http://www.adobe.com/de/products/flash.html
http://espeak.sourceforge.net/
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sctk.htm
http://www.kirshenbaum.net/IPA/
http://www.kirshenbaum.net/IPA/
http://www.adobe.com/devnet/actionscript.html
http://www.adobe.com/devnet/actionscript.html
http://www.ubuntu.com/
http://www.ubuntu.com/
http://www.behind-the-enemy-lines.com/2008/03/mechanical-turk-demographics.html
http://www.behind-the-enemy-lines.com/2008/03/mechanical-turk-demographics.html
http://www.php.net/
http://en.wikipedia.org/wiki/History_of_the_IPA
http://www.php.net/
http://en.wikipedia.org/wiki/Micropayment
http://aws.amazon.com/mturk/

Index 53

Index

Dictionary, 6

	Titelseite
	Contents
	1 Introduction
	1.1 Goals of this Study
	1.2 GlobalPhone and CMU Dict
	1.3 Crowdsourcing
	1.4 Structure

	2 Basics
	2.1 Automatic Speech Recognition
	2.2 Pronunciation Dictionary
	2.3 Amazon Mechanical Turk
	2.4 International Phonetic Alphabet

	3 Related Work
	3.1 Peekaboom
	3.2 Human Factors during Bootstrapping
	3.3 LexLearner
	3.4 Summary

	4 Analysis of Requirements
	4.1 Requirements
	4.2 User analysis
	4.3 Analyzing user task
	4.4 Summary

	5 Design
	5.1 General Interface Design
	5.2 Backend Implementation
	5.3 Specific Interface Design
	5.4 Summary

	6 Experimental Setup
	6.1 Experiment on Amazon Mechanical Turk
	6.2 Free Game Experiment
	6.3 Summary

	7 Results
	7.1 mTurk
	7.2 Voluntary Keynounce
	7.2.1 General results
	7.2.2 Results after postprocessing

	7.3 Summary

	8 Conclusion
	9 Future Work
	Bibliography
	Index

