
A Multiplatform Speech Recognition Decoder Based
on Weighted Finite-State Transducers

Emilian Stoimenov and Tanja Schultz

Cognitive Systems Labs, Institute for Anthropomatics, University of Karlsruhe
Am Fasanengarten 5, D-76131 Karlsruhe, Germany

{emilian, tanja}@ira.uka.de

Abstract— Speech recognition decoders based on static graphs

have recently proven to significantly outperform the traditional
approach of prefix tree expansion in terms of decoding speed [1],
[2]. The reduced search effort makes static graph decoders an
attractive alternative for tasks concerned with limited processing
power or memory footprint on devices such as PDAs, internet
tablets, and smart phones. In this paper we explore the benefits
of decoding with an optimized speech recognition network over
the fully task-optimized prefix-tree based decoder IBIS [3]. We
designed and implemented a new decoder called SWIFT (Speedy
WeIgthed Finite-state Transducer) based on WFSTs with its
application to embedded platforms in mind. After describing the
design, the network construction and storage process, we present
evaluation results on a small task suitable for embedded
applications, and on a large task, namely the European
Parliament Plenary Sessions (EPPS) task from the TC-STAR
project [20]. The SWIFT Decoder is up to 50% faster than IBIS
on both tasks. In addition, SWIFT achieves significant memory
consumption reductions obtained by our innovative network
specific storage layout optimization.

I. INTRODUCTION

Weighted finite-state transducers (WFSTs) [4] have been
explored in various scenarios and on multiple tasks as a means
of speech recognition search space construction. AT&T
described their commercial speech recognizer based on
WFSTs in [5], and IBM reported having written multiple
WFST decoders [6]. In the WFST approach, a single unified
network is constructed, in which the decoder searches for the
path that corresponds to the most likely word string
hypothesis given the spoken input, i.e. the sequence of
observation vectors. This network comprises of the different
knowledge sources used in speech recognition, approximated
or represented exactly as transducer mappings, and then
combined using weighted composition.

Less orthodox approaches have also been developed, such
as exploring on-the-fly composition to balance between
decoder run time performance and network size. In [7] a
specialized composition algorithm has been described, and
then some more general approaches followed in [8], [9], and
[10].

There have been a number of developments for embedded
platforms as well. The main implementation challenge for
embedded platforms is the need for fixed-point arithmetic due
to the lack of a floating point processor. In [11] a short text
message dictation system is described, which uses a
moderately sized language model, albeit a context
independent acoustic model to keep the network size small.

Earlier, [12] presented the application of codebook
quantization and decoding with finite-state transducers with
fixed-point weights.

Direct head-to-head comparison with the well-established
prefix-tree expansion approach used in most commercial and
community speech recognizers has not been as common.
Kanthak et. al. [1] compared the AT&T recognizer with the
one from RWTH, with results in favour of the WFST
approach as implemented by AT&T. In a comparison from
Philips [2], an unweighted decoding graph is successively
optimized and the influence of various optimization
techniques is explored. The author demonstrates how to apply
the same optimizations to a prefix tree and obtains similar
performance improvements with their dynamic decoder.
Moore et. al. [13] conducted preliminary tests of the WFST
decoder “Juicer” against the HTK decoder HVite, showing
that at tighter beam widths Juicer is outperformed by HVite.

We were interested in developing our own WFST-based
recognizer SWIFT and put it to the test against the
contemporary prefix-tree based speech decoder IBIS [3] using
a small task appropriate for embedded devices. This was done
in order to assess the behaviour of WFST-based search under
processing power and footprint constraints, as described in
Section II.

To verify our implementation and to further study the
SWIFT decoder, we also tested the decoder on a more
demanding corpus taken from the 2006 TC-STAR evaluation.
For evaluation, we converted models developed by University
of Karlsruhe to a WFST network and compared the run time
behaviour of both decoders. To allow fair testing, we
integrated the SWIFT decoder into the Janus Recognition
Toolkit and kept the acoustic and language models the same
for both decoders. In these tests, the signal pre-processing and
Gaussian evaluation code were shared to eliminate any impact
of those factors to the comparison.

The following section II describes the experimental setup
used to compare the decoders. Section IV gives an overview
of the recognition network construction process and Section
III describes how we applied it for both tasks. It also shows
the sizes of the resulting networks. Section V outlines an
improvement over existing network memory layout storage
strategies, which turned out to significantly reduce memory
consumption. The decoder implementation along with some
improvements we discovered along the way of building a truly
efficient search engine is explained in Section VI. Finally,

978-1-4244-5479-2/09/$26.00 © 2009 IEEE ASRU 2009293

section VII presents the results of the experiments and
concludes with a discussion and future work.

II. EVALUATION SETUP

The first evaluation was run on BTEC (Basic Travel
Expression Corpus), a multilingual collection of
conversational phrases in the travel domain developed by
ATR [19]. The test set consists of 9 speakers and a total of
386 utterances. We used a language model with 8000 bigrams
and 14996 trigrams trained on classes, representing street
names, proper names, places of interest, and events. The total
test vocabulary consisted of 3005 words. The acoustic model
trained for this task was a set of three-state fully-continuous
pentaphone HMMs with a total of 4000 Gaussians. A standard
front-end was used, whereby 15 consecutive frames
represented by the first 13 MFCCs were combined into a 195
dimensional vector, transformed by a Linear Discriminant
Analysis matrix to produce a 32 dimensional observation
vector. The asymptotic word accuracy of these acoustic and
language models under wide beams is 81%.

To confirm the results from this first BTEC task, we also
ran both decoders on the public condition of the 2006 TC-
STAR evaluation. It consists of 1676 utterances, distributed
over 51 speakers in sessions of the European Parliament [20].
The acoustic models were trained on approximately 80h of
English EPPS data, 9.8h of TED data, and 167h of
unsupervised EPPS training material. The unsupervised
training material was obtained by adapting the acoustic model
of a 2006 system on the output from RWTH Aachen and
decoding the data, while using the segmentation provided by
RWTH Aachen. We applied pentaphone semi-continuous
models using 16,000 distributions over 4000 Gaussians with a
variable number of Gaussians per model.

The language model is an interpolation of four 4-gram
language models trained on 7 different sources with a total of
424,400,000, words. The final combination consists of ~10 M
bigrams, 10M trigrams, and 11M fourgrams over a 40,000
word vocabulary.

The signal pre-processing of the EPPS system uses the first
13 MFCCs extracted from the FFT power spectrum. For the
FFT a hamming window with a length of 16ms was applied
using a window shift of 10ms. Fifteen adjacent frames were
stacked into one feature vector and LDA was used to reduce
the dimension of the feature vector to 42. The first speaker-
adapted pass of the complete system achieves a word accuracy
of 89.3%

Due to memory limitations, a recognition network based on
the full fourgram language model of the EPPS system could
not be built. Therefore we chose to prune it using the SRI LM
toolkit [21] with a threshold of 1e-7. This resulted in a
language model with about 1 M bigrams, 342,000 trigrams,
and 80,000 fourgrams over the same 40,000 words. The
accuracy of both decoders using this language model is 87.7%.

III. WFST-BASED DECODING

As originally proposed by Mohri et. al. [4] a weighted
finite-state transducer (WFST) that translates phone

sequences into word sequences can be obtained by forming
the composition L �G, where L is a lexicon which translates
the phonetic transcription of a word to the word itself, and G
is a grammar or language model which assigns to valid
sequences of words a weight consisting of the negative log
probability of this sequence. In the original formulation of
Mohri and Riley [22], phonetic context is modelled by the
series of compositions H � C � L �G, where H is a transducer
converting sequences of Gaussian mixture models to
sequences of polyphones, and C is a transducer that converts
these polyphone sequences to corresponding sequences of
phones. An alternative more efficient approach which reduces
the computational effort of this explicit phone context
expansion was proposed in [23] and corrected in [15]. This
method constructs the composed transducer H � C directly by
enumerating the possible HMM sequences and connecting
them accordingly. We call this transducer ‘HC’ to reflect the
difference with the explicit composition of H and C.

The integrated transducer HC � L �G contains many
redundant paths, which can be merged together by means of
weighted determinization and weighted minimization [4].
These algorithms are generalizations of the corresponding
algorithms for unweighted automata. When applied together
to the final recognition transducer, they have the effect of
merging together the equivalent GMM sequence expansions
of word prefixes and suffixes.

An integral part of weighted minimization is weight
pushing. It moves the weight along a path of the transducer as
near as possible to the initial node. In addition to enabling a
more efficient minimization, weight pushing also makes
pruning more effective, because the bulk of the path weight is
placed in its beginning and the decoder can discard
unpromising paths as early as possible. However, Mohri et. al.
[4] noted that pushing using the max operation of the tropical
semi-ring for combining the weights of the paths from a node
actually reduces the speed of the decoder. We observe the
same performance degradation in our experiments.

Figure 1 shows a typical path of the determinized and
minimized integrated transducer HC � L �G constructed for
the TC-STAR task as described in the following section.

IV. NETWORK CONSTRUCTION

A. Phone level transducers

The experiment on the small BTEC task uses a class based
language model. Representing class based language models
with WFSTs has been already described in [14], but we
include it here for sake of completeness. Assuming non-
overlapping word classes, a trigram model assigns

���� ����	
���	
�
�����	
����	
���� ��	
����

to a sequence of words W = (w1, w2, ..., wn), where (wi, c(wi))
is the word-class relation. This probability can readily be
represented by the composition of the language model
transducer G with a class transducer K in either the tropical or
the log semi-ring. The structure of K is a simple loop,

294

mapping classes to their word members with the
corresponding class conditional probability. However, the
composed transducer G � K is non-functional because of the
many-to-one nature of the word-class mapping. Therefore, it
needs to be projected on the output side and then determinized.
A consequent straightforward composition with a dictionary
transducer L followed by determinization, weight pushing,
and minimization results in an optimal transducer mapping
phone units to words, together with the correct class history
probability.

B. Acoustic model transducers

The acoustic model in both tasks uses pentaphones. To
model the context dependencies, we converted the decision
tree to a directly composed ‘HC’ transducer using the method
described in Section III. The size of the HC transducer built
for the EPPS task was too large to be composed into a
network, much less for the resulting network to be
determinized. To overcome this problem, we made use of the
fact that the 16,000 different distributions on the leaves of the
decision tree are mapped to only 4,000 GMMs in the semi-
continuous model. We replaced the distribution symbols with
the corresponding GMM symbols, then determinized and
minimized the transducer to obtain a new transducer HCGMM.
The size of the transducer shrank by a factor of almost nine
which allowed us to build an integrated recognition network.
Table I shows the sizes of the optimized combined HC
transducers.

TABLE I
SIZES OF THE COMBINED HC TRANSDUCER FOR BOTH TASKS.

 Nodes Arcs
BTEC HC 20,263 215,189
TC-STAR HC 1,456,145 9,774,218
TC-STAR HCGMM 157,261 1,127,032

The sizes of the optimized H C � L �G transducers for both

tasks are shown in Table II.

TABLE II
RECOGNITION TRANSDUCER SIZES FOR THE BTEC AND THE TC-STAR TASKS.

 Nodes Arcs
BTEC 1,633,975 2,178,331
TC-STAR 13,755,867 21,409,106

All network composition and optimization operations were

performed with OpenFst [18].

V. NETWORK LAYOUT

The most common network layout implementation is a
linear array of arc structures, sorted by the source node, with
fields indicating the input GMM index, the output index, and
the weight. A couple of improvements can be made on this
network organisation to save space. Caseiro [7] employed a
variable bit encoding that uses the properties of the network to
reduce the average number of bits per state. Saon et. al. [6]
and Olsen et. al. [11] described a similar network arrangement.
The benefits of the network layout in [7] are negated by the
memory alignment properties of most modern computing
platforms, therefore Caseiro suggests accessing the edges in
chunks during the decoding. This requires a new index layer
to map from states to chunks.

In contrast, we implemented a simpler approach which
builds upon the fact that the network is not factored.
Combined with the transducer / acceptor conversion in [6],
this approach allows us to compress the small BTEC network
to about half of its size on disk when encoded using 10 Bytes
per arc.

The HC transducer expands every context dependent
triphone to a sequence of GMM indices. Many of those three
state sequences are unique and produce linear arc chains in the
transducer. Others are not unique, but participate in word
phone expansions which could not be merged during the
determinization and minimization of L �G. In [4], these
chains are compacted into one arc by means of a second
transducer mapping chains to HMM specification symbols.
This way, only the compacted transducer is used in the
decoding, the HMM specification symbols being expanded by
the decoder on demand as part of the HMM evaluation
routines.

We do not have a variable length specification for the
HMMs as in [4], but we still would like to reduce the impact
of the linear arcs on the transducer size. Replacing the linear
succession of arcs to one arc and expanding it on-the-fly
would complicate the token management in the decoder. The
alternative is to decrease the amount of memory required by
an arc in a linear sequence. Indeed, the indices that label the
states along the chains can be chosen in linear succession and
only the beginning state index from the branch can be stored.
A single bit taken from the symbol label can mark an arc
involved in such a linear chain. When propagating a token, the
transducer access program code knows the node index that
contains the token, and calculates the new target node index

Figure 1. Two paths from the TC-STAR network showing the GMM expansion of the word trigram “<s> we’ll </s>”. The two paths correspond to the two
pronunciation variants of “we’ll” : “w x l” and “w I l”. The label notation is input:output/weight. The sum of the weights along both paths is the same and is
given by the language model. The symbols “#1” and “#2” are the disambiguation symbols added to be able to determinize L � G as described in [4].

w-m(58):�/1.456
w-b(79):�/4.833 SIL-m:<s>/0

w-m(36):�/1.606 I-b(180):we/1.224

w-e(25):�/0.106 x-b(172):we/1.231 x-m(157):�/0.139 x-e(193):�/0 l-b(123):�/1.086 l-m(64):�/0 l-e(54):�/0
SIL-m:</s>/0

l-m(129):�/1.068 w-e(67):�/0 I-m(129):�/0 I-e(156):�/0.142 l-b(28):�/0 l-e(54):�/0

#1:we’ll/0.852

#2:we’ll/0.852

295

by incrementing the old one if it is propagating the token
along a chain. This way the information necessary to store this
arc becomes the triple (input, output, weight). Furthermore,
weight pushing moves the weights on the branches of the
transducer, leaving zero weight along the linear chains. Thus,
the only information needed to store for an arc in a chain is
the input/output pair. Moving the output side to the input side
removes the necessity to store the transducer output alphabet,
but can increase the size of the transducer because new arcs
have to be added where both the input and the output side are
different from epsilon. In our experiments, these additional
arcs were very few as shown in Table III and made the
conversion worthwhile.

TABLE III
RELATIVE TRANSDUCER SIZE INCREASE WHEN CONVERTED TO AN ACCEPTOR

(COMPARED TO THE ORIGINAL TRANSDUCER SIZES IN TABLE II).

 Additional Arcs Size Increase
BTEC 104,761 4.8%
TC-STAR 2,427,719 11%

A depth first search writing the indices of the graph nodes

as they are discovered would produce the desired state
arrangement. Unfortunately, it has the potential to break a
useful property of the decoder: the fact that it accesses the
network in a breadth first manner. This would deteriorate the
cache locality and possibly slow down the decoder. Therefore,
an algorithm for arranging the nodes which performs breadth
first search and switches to depth first search on the linear
paths is a suitable alternative to get the best of both worlds.

We have to note that this storage scheme can be applied
without modification to the branches in the network by
numbering all target nodes at a given branch with consecutive
numbers. Unfortunately, this is not as efficient, because not all
branch target nodes can be renumbered this way due to the
cyclic nature of the network. Also, not all target nodes in a
chain path can be consecutively numbered, namely the target
node of the last chain has to retain its original index, because
the in-degree of the last node is greater than one. This gives
rise to the following categorization of all transducer arcs:

a) branch arcs which can be consecutively numbered;
[ConsBrnchArc]

b) branch arcs which lead backwards into the network
and cannot be consecutively numbered; [BrnchArc]

c) chain arcs; [ChnArc]
d) arcs that are last in a chain. [LstChnArc]

The following tables show the percentage of arcs types

contained in each of the networks we examined.

TABLE III
DISTRIBUTION OF THE ARC TYPES IN THE BTEC NETWORK

 Arcs Percentage
CnsBrnchArc 237,602 10.40 %

BrnchArc 558,237 24.45 %
ChnArc 1,203,028 52.69 %

LstChnArc 284,226 12.45 %

TABLE IV
DISTRIBUTION OF THE ARC TYPES IN THE TC-STAR NETWORK

 Arcs Percentage
CnsBrnchArc 4,246,202 17.81 %

BrnchArc 11,940,612 50.09 %
ChnArc 6,763,075 28.37 %

LstChnArc 886,933 3.72 %

ChnArcs amount to more than half of the BTEC network

and more than one fourth of the TC-STAR network. The
branch arcs in the TC-STAR network are more than the chain
arcs, because of the high degree of sharing between the three-
state HMM sequences in the TC-STAR HC transducer. It
would be desirable to apply the compression to both
CnsBrnchArcs and ChnArcs at the same time; however, the
simultaneous renumbering of both arc types is impossible in
general. The reason is that chains can directly follow a branch,
and thus break the consecutive ordering of the branch target
nodes as shown in Figure 2.

Table V shows the network sizes in Megabytes on the

BTEC and TC-STAR experiments when saving only the input
label for ChnArcs and the (target, label, weight) triple for all
other arc types. A comparison is given with the memory usage
of the recognition transducers, which are binary encoded with
10 bytes per arc (4 bytes for the target node index, two 2 byte
label fields and another 2 bytes for the weight).

We compressed the BTEC and TC-STAR networks using 2
bytes for the label of all ChnArcs. For all other arc types, we
needed 4 Bytes for the target node index, 2 bytes for the label
and 2 bytes for the weight. This encoding results in a
compression rate of 4.8 bytes per arc for the small network
and 6.3 bytes per arc for the large one. This method achieves
higher efficiency than the one in [7] where the best storage
rate was 5.2 bytes per arc on a recognition transducer with
context independent phones and 7.2 bytes when encoding
language model transducers.

TABLE V
MEMORY USAGE OF THE COMPRESSED NETWORKS

 Standard ChnArc
BTEC 20.7 MB 10.5 MB
TC-STAR 227.3 MB 143.16 MB

Figure 2. A branch in the network, followed by a chain. The arcs are labeled
by GMM names. The chain {A-e(69), L-b(13)} follows a branch at node 2.
Node 6 cannot be numbered 4, because the index is used by the target node of
arc A-e(69).

2

3 4

6

7

A-b(96)

A-m(76)
A-e(69)

A-m(77)

A-m(79)

1

5
L-b(13)

296

The only function of the nodes in the transducer network is
to link and combine alternative paths, because the observation
distributions are put on the input side of the arcs and many
arcs with different input symbols can end in a node. That is
why after renumbering the network the node indices can be
completely replaced by offsets in the array of arcs. This way,
the setup becomes a permanently stored adjacency list graph
representation, and the arc array is the only remaining
structure that fully describes the transducer.

VI. TOKEN PASSING

Since the entire network construction work is offloaded in a
pre-processing stage, the decoder can be written in a breadth-
first search style as a token passing algorithm [16]. The
decoder implementation keeps two active token queues: the
queue qcur processed in the current frame and the queue qnext
which holds the propagated tokens from qcur. The current
frame queue is visited in a linear fashion and for each child
node the language model score is added to the token score. If
the score falls within a beam width distance from the current
best score, the GMM on the input side of the arc is
immediately evaluated and accumulated in the token. The
token is then queued for propagation in the next frame by
placing it into qnext. This happens unless the arc target node
has not been already occupied by a token. To verify this, we
use a hash table mapping static indices to indices in qnext as
described in Saon et. al. [6]. In case the state has been
occupied, and the score of the old token is worse, it is replaced
by the new token.

At each new frame, the roles of qcur and qnext are swapped
by exchanging their pointers and qnext has to be cleared. This
cleanup operation is expensive as the queue can hold tens of
thousands of tokens which have to be invalidated at each new
frame. However, the cleanup work can be avoided by storing
an additional frame index in the token queue, which indicates
at which frame the token was placed in the queue. This way,
the hash table lookup described in the previous paragraph is
complemented by an inexpensive check to see if the token
found in the target state was placed there earlier during the
processing of the same observation frame.

The decoder computes the acoustic scores as they are
requested during the token propagation, avoiding duplicate
acoustic score computation by storing the already computed
scores in a cache. This is different from the prefix tree
expansion and acoustic score computation implemented in
IBIS. The IBIS decoder processes the frame in two steps: an
expansion step, consisting of network expansion and token
propagation, and a score computation and token pruning step.
In the first step, the tokens are propagated across word and
phone boundaries, and the relevant beams are applied. At the
same time, the acoustic scores are requested for computation.

The second step computes the requested scores and applies
them to the tokens, involving a second pass over the active
tokens. We implemented this two-step method in the SWIFT
decoder and compared the speed of both strategies. The results
showed that the after-frame score evaluation is slower by

relatively 5-10%. Nevertheless, the SWIFT decoder using the
late evaluation scheme is still faster than IBIS.

VII. EXPERIMENTS AND RECOGNITION RESULTS

We started by tuning the IBIS decoder on the small BTEC
task. After finding the best combination of language model
weight and word insertion penalty on the development set, we
proceeded to determine the relationship between Real Time
Factor (RTF) and Accuracy (WA) shown on Figure 3. We
then did the same for the SWIFT decoder. It can be seen from
Figure 2 that even though the results are very similar, the
SWIFT decoder converges faster to the optimal recognition
rate. For example, at 79.5% WA, the SWIFT Decoder is 50%
faster than IBIS. These experiments were performed on an
Intel(R) Core(TM) 2 Duo CPU with each core running at
2.33GHz. IBIS had a peak resident memory usage at 53 MB,
while the SWIFT Decoder’s memory footprint was 52 MB.

We also performed different experiments with the SWIFT
decoder to study the impact of pushing in the log and in the
tropical semi-ring. The results show that the network
constructed in the tropical semi-ring significantly slows down
the decoder even given the small BTEC task. A plausible
explanation for this is the Viterbi maximum approximation
used when calculating the node potentials during weight
pushing. The log semi-ring would sum the weights

when combining the paths, and this way correctly implement
the “or” semantics for the path probabilities given by the
language model. Furthermore, the node potentials will be
higher than those when using the max approximation. This
results in more weight being pushed to the beginning of the
network.

Figure 4 shows the corresponding WA/RTF relationship for
the large vocabulary EPPS task. There we see results
consistent with the BTEC task, although the improvement is
more moderate. For example at 76.5% WA, the relative speed
improvement is close to 26%. The difference between the
decoders disappears at real-time factors larger than 3.5.

Figure 3. Comparison of SWIFT with the prefix-tree decoder Ibis on the
BTEC corpus. We also show comparison of two networks whose weights are
pushed in the log and in the tropical semi-ring respectively.

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor

Ibis

SWIFT (log)

SWIFT (tropical)

297

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we described the design and implementation
of a WFST based decoder called SWIFT (Speedy WeIgthed
Finite-state Transducer). The decoder is supposed to support
multiple platforms, i.e. its design and implementation is meant
to work out on PCs as well as on resource-constrained devices
with limits in both, processing power and memory. We
described new solutions to drastically reduce the network size
by combining the factoring idea from [4] with a histogram
analysis on the arcs in the network to construct a new network
layout which does not hamper recognition speed and is simple
to implement and use. Furthermore, we achieved a significant
memory consumption reductions obtained by an innovative
network specific storage layout optimization.

The resulting decoder was evaluated on two very different
setups, a small vocabulary domain restricted conversational
travel phrases task (BTEC) and a large vocabulary task on
European Parliament Speeches (EEPS). The results of the
SWIFT decoder were also compared to the JRTk IBIS
decoder. In both tasks SWIFT achieved an up to 50% speed-
up over IBIS.

Overall, we see significant improvements in recognizing
both the relatively small BTEC task and the EPPS task with
large acoustic and language models. The EPPS experiments
showed that large tasks are still quite challenging, mostly due
to the memory requirements for the determinization in the
final network optimization step. Therefore, in the near future
we plan to focus on adding dynamic composition to the
decoder and optimizing the determinization in the final
processing step. The arc compression does not pose a problem
for the dynamic composition, because, similar to the decoder,
it accesses the arcs of the transducers being composed in a
breadth first search style. However, BrnchArcs might prove to
be more suitable for compression in long span language
models, because of the high average forward branching factor
of their transducer approximations.

ACKNOWLEDGEMENTS

The authors wish to thank Thilo Köhler and Christian
Fügen for providing the BTEC system and their active support.

We are also grateful to Sebastian Stüker for making the
speaker adapted first pass of University of Karlsruhe’s
submission to the 2007 TC-STAR evaluation available to us.

REFERENCES
[1] S. Kanthak, H. Ney, M. Riley and M. Mohri. “A comparison of two

LVR search optimizations techniques.” ICSLP’02, Denver, Colorado,
USA, 2002.

[2] H. Dolfing. “A comparison of prefix tree and finite-state transducer
search space modelings for large-vocabulary speech recognition,”
ICSLP’02, Denver, Colorado, USA, 2002.

[3] H. Soltau, F. Metze, C. Fügen, and A. Waibel. “A One Pass-Decoder
Based on Polymorphic Linguistic Context Assignment”, ASRU, Trento,
Italy, 2001.

[4] M. Mohri, F. Pereira, and M. Riley. “Weighted finite-state transducers
in speech recognition”, Computer Speech and Language, 16:69–88,
2002.

[5] V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tür, A. Ljolje, S.
Parthasarathy, M. Rahim, G. Riccardi and M. Saraclar. “The AT&T
Watson Speech Recognizer”, Interspeech ‘05, Lisbon, Portugal, 2005.

[6] G. Saon, D. Povey, and G. Zweig. "Anatomy of an extremely fast
LVCSR decoder", Interspeech ‘05, Lisbon, Portugal, 2005.

[7] D. Caseiro and I. Trancoso. “Using Dynamic WFST Composition for
Recognizing Broadcast News”, ICSLP’02, Denver, Colorado, USA,
2002.

[8] T. Hori, A. Nakamura.”Generalized Fast On-the-fly Composition
Algorithm for WFST-Based Speech Recognition”, Interspeech ‘05,
Lisbon, Portugal, 2005.

[9] O. Cheng, J. Dines, M. M. Doss. “A Generalized Dynamic
Composition Algorithm of Weighted Finite-State Transducers for
Large Vocabulary Speech Recognition”, ICASSP ‘07, Honolulu,
Hawaii, USA, 2007.

[10] J. McDonough, E. Stoimenov, D. Klakow. “An Algorithm for Fast
Composition of Weighted Finite-State Transducers”, ASRU ‘07, Kyoto,
Japan, 2007.

[11] J. Olsen, Y. Gao, G. Ding, X. Yang. “A Decoder for Large Vocabulary
Continuous Short Message Dictation on Embedded Devices”,
ICASSP ’08, Las Vegas, Nevada, USA, 2008.

[12] E. Bocchieri, D. Blewett. “A Decoder for LVCSR Based on Fixed-
Point Arithmetic”, ICASSP, Toulouse, France, 2006.

[13] D. Moore, J. Dines, M. M. Doss, J. Vepa, O. Cheng, T. Hain. “Juicer:
A Weighted Finite-State Transducer Speech Decoder”, MLMI ‘06,
Washington DC, USA, 2006.

[14] C. Allauzen, M. Mohri, B. Roark, and M. Riley. “A Generalized
Construction of Integrated Speech Recognition Transducers”, ICASSP
‘04, Montréal, Canada, 2004.

[15] E. Stoimenov, J. McDonough. “Memory Efficient Modeling of
Polyphone Context with Weighted Finite-State Transducers”,
Interspeech ‘07, Antwerp, Belgium, 2007.

[16] S.J. Young, N.H. Russell , J.H.S. Thornton. “Token Passing: a Simple
Conceptual Model for Connected Speech Recognition Systems”,
Technical Report, University of Cambridge, 1989.

[17] T. Köhler, C. Fügen, S. Stüker, and A. Waibel, “Rapid Porting of ASR
Systems to Mobile Devices”, Interspeech ‘05, Lisboa, Portugal, 2005.

[18] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, M. Mohri. “OpenFst: A
General and Efficient Weighted Finite-State Transducer Library”,
CIAA ‘07, Prague, Czech Republic, 2007.

[19] G. Kikui and E. Sumita and T. Takezawa and S. Yamamoto. “Creating
corpora for speech-to-speech translation”, Interspeech ‘03, pp. 381-
384, Geneva, Switzerland, 2003.

[20] Technology and Corpora for Speech to Speech Translation (TC-STAR).
Integrated Project funded by the European Commission, Project No.
FP6-506738, 2004-2007. http://www.tc-star.org.

[21] A. Stolke. “SRILM – An Extensible Language Modeling Toolkit”,
ICSLP ’02, Denver, Colorado, USA, 2002

[22] M. Mohri and M. Riley. “Network optimizations for large vocabulary
speech recognition”. Computer Speech and Language, 16:69-88, 2002

[23] M. Schuster and T. Hori. “Efficient Generation of High-order Context-
Dependent Weighted Finite-State Transducers for Speech Recognition”,
ICASSP ’05, Philadelphia, PA, USA, 2005

Figure 4. Comparison of the IBIS prefix-tree decoder and the SWIFT
decoder on the large vocabulary EPPS task.

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5

W
or

d
A

cc
ur

ac
y

(%
)

Real Time Factor

Ibis

SWIFT

298

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Tanja Schultz
