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Abstract— Speech recognition decoders based on static graphs 

have recently proven to significantly outperform the traditional 
approach of prefix tree expansion in terms of decoding speed [1], 
[2]. The reduced search effort makes static graph decoders an 
attractive alternative for tasks concerned with limited processing 
power or memory footprint on devices such as PDAs, internet 
tablets, and smart phones. In this paper we explore the benefits 
of decoding with an optimized speech recognition network over 
the fully task-optimized prefix-tree based decoder IBIS [3]. We 
designed and implemented a new decoder called SWIFT (Speedy 
WeIgthed Finite-state Transducer) based on WFSTs with its 
application to embedded platforms in mind. After describing the 
design, the network construction and storage process, we present 
evaluation results on a small task suitable for embedded 
applications, and on a large task, namely the European 
Parliament Plenary Sessions (EPPS) task from the TC-STAR 
project [20]. The SWIFT Decoder is up to 50% faster than IBIS 
on both tasks. In addition, SWIFT achieves significant memory 
consumption reductions obtained by our innovative network 
specific storage layout optimization. 

I. INTRODUCTION 

Weighted finite-state transducers (WFSTs) [4] have been 
explored in various scenarios and on multiple tasks as a means 
of speech recognition search space construction. AT&T 
described their commercial speech recognizer based on 
WFSTs in [5], and IBM reported having written multiple 
WFST decoders [6]. In the WFST approach, a single unified 
network is constructed, in which the decoder searches for the 
path that corresponds to the most likely word string 
hypothesis given the spoken input, i.e. the sequence of 
observation vectors. This network comprises of the different 
knowledge sources used in speech recognition, approximated 
or represented exactly as transducer mappings, and then 
combined using weighted composition. 

Less orthodox approaches have also been developed, such 
as exploring on-the-fly composition to balance between 
decoder run time performance and network size. In [7] a 
specialized composition algorithm has been described, and 
then some more general approaches followed in [8], [9], and 
[10]. 

There have been a number of developments for embedded 
platforms as well. The main implementation challenge for 
embedded platforms is the need for fixed-point arithmetic due 
to the lack of a floating point processor. In [11] a short text 
message dictation system is described, which uses a 
moderately sized language model, albeit a context 
independent acoustic model to keep the network size small. 

Earlier, [12] presented the application of codebook 
quantization and decoding with finite-state transducers with 
fixed-point weights. 

Direct head-to-head comparison with the well-established 
prefix-tree expansion approach used in most commercial and 
community speech recognizers has not been as common.  
Kanthak et. al. [1] compared the AT&T recognizer with the 
one from RWTH, with results in favour of the WFST 
approach as implemented by AT&T. In a comparison from 
Philips [2], an unweighted decoding graph is successively 
optimized and the influence of various optimization 
techniques is explored. The author demonstrates how to apply 
the same optimizations to a prefix tree and obtains similar 
performance improvements with their dynamic decoder. 
Moore et. al. [13] conducted preliminary tests of the WFST 
decoder “Juicer” against the HTK decoder HVite, showing 
that at tighter beam widths Juicer is outperformed by HVite. 

We were interested in developing our own WFST-based 
recognizer SWIFT and put it to the test against the 
contemporary prefix-tree based speech decoder IBIS [3] using 
a small task appropriate for embedded devices. This was done 
in order to assess the behaviour of WFST-based search under 
processing power and footprint constraints, as described in 
Section II.  

To verify our implementation and to further study the 
SWIFT decoder, we also tested the decoder on a more 
demanding corpus taken from the 2006 TC-STAR evaluation. 
For evaluation, we converted models developed by University 
of Karlsruhe to a WFST network and compared the run time 
behaviour of both decoders. To allow fair testing, we 
integrated the SWIFT decoder into the Janus Recognition 
Toolkit and kept the acoustic and language models the same 
for both decoders. In these tests, the signal pre-processing and 
Gaussian evaluation code were shared to eliminate any impact 
of those factors to the comparison. 

The following section II describes the experimental setup 
used to compare the decoders. Section IV gives an overview 
of the recognition network construction process and Section 
III describes how we applied it for both tasks. It also shows 
the sizes of the resulting networks. Section V outlines an 
improvement over existing network memory layout storage 
strategies, which turned out to significantly reduce memory 
consumption. The decoder implementation along with some 
improvements we discovered along the way of building a truly 
efficient search engine is explained in Section VI. Finally, 
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section VII presents the results of the experiments and 
concludes with a discussion and future work.  

II. EVALUATION SETUP 

The first evaluation was run on BTEC (Basic Travel 
Expression Corpus), a multilingual collection of 
conversational phrases in the travel domain developed by 
ATR [19]. The test set consists of 9 speakers and a total of 
386 utterances. We used a language model with 8000 bigrams 
and 14996 trigrams trained on classes, representing street 
names, proper names, places of interest, and events. The total 
test vocabulary consisted of 3005 words. The acoustic model 
trained for this task was a set of three-state fully-continuous 
pentaphone HMMs with a total of 4000 Gaussians. A standard 
front-end was used, whereby 15 consecutive frames 
represented by the first 13 MFCCs were combined into a 195 
dimensional vector, transformed by a Linear Discriminant 
Analysis matrix to produce a 32 dimensional observation 
vector. The asymptotic word accuracy of these acoustic and 
language models under wide beams is 81%.  

To confirm the results from this first BTEC task, we also 
ran both decoders on the public condition of the 2006 TC-
STAR evaluation. It consists of 1676 utterances, distributed 
over 51 speakers in sessions of the European Parliament [20]. 
The acoustic models were trained on approximately 80h of 
English EPPS data, 9.8h of TED data, and 167h of 
unsupervised EPPS training material. The unsupervised 
training material was obtained by adapting the acoustic model 
of a 2006 system on the output from RWTH Aachen and 
decoding the data, while using the segmentation provided by 
RWTH Aachen. We applied pentaphone semi-continuous 
models using 16,000 distributions over 4000 Gaussians with a 
variable number of Gaussians per model. 

The language model is an interpolation of four 4-gram 
language models trained on 7 different sources with a total of 
424,400,000, words. The final combination consists of ~10 M 
bigrams, 10M trigrams, and 11M fourgrams over a 40,000 
word vocabulary.  

The signal pre-processing of the EPPS system uses the first 
13 MFCCs extracted from the FFT power spectrum. For the 
FFT a hamming window with a length of 16ms was applied 
using a window shift of 10ms. Fifteen adjacent frames were 
stacked into one feature vector and LDA was used to reduce 
the dimension of the feature vector to 42. The first speaker-
adapted pass of the complete system achieves a word accuracy 
of 89.3% 

Due to memory limitations, a recognition network based on 
the full fourgram language model of the EPPS system could 
not be built. Therefore we chose to prune it using the SRI LM 
toolkit [21] with a threshold of 1e-7. This resulted in a 
language model with about 1 M bigrams, 342,000 trigrams, 
and 80,000 fourgrams over the same 40,000 words. The 
accuracy of both decoders using this language model is 87.7%.  

III. WFST-BASED DECODING 

As originally proposed by Mohri et. al. [4] a weighted 
finite-state transducer (WFST) that translates phone 

sequences into word sequences can be obtained by forming 
the composition L �G, where L is a lexicon which translates 
the phonetic transcription of a word to the word itself, and G 
is a grammar or language model which assigns to valid 
sequences of words a weight consisting of the negative log 
probability of this sequence. In the original formulation of 
Mohri and Riley [22], phonetic context is modelled by the 
series of compositions H � C � L �G, where H is a transducer 
converting sequences of Gaussian mixture models to 
sequences of polyphones, and C is a transducer that converts 
these polyphone sequences to corresponding sequences of 
phones. An alternative more efficient approach which reduces 
the computational effort of this explicit phone context 
expansion was proposed in [23] and corrected in [15]. This 
method constructs the composed transducer H � C  directly by 
enumerating the possible HMM sequences and connecting 
them accordingly. We call this transducer ‘HC’ to reflect the 
difference with the explicit composition of H and C. 

The integrated transducer HC � L �G contains many 
redundant paths, which can be merged together by means of 
weighted determinization and weighted minimization [4]. 
These algorithms are generalizations of the corresponding 
algorithms for unweighted automata. When applied together 
to the final recognition transducer, they have the effect of 
merging together the equivalent GMM sequence expansions 
of word prefixes and suffixes.  

An integral part of weighted minimization is weight 
pushing. It moves the weight along a path of the transducer as 
near as possible to the initial node. In addition to enabling a 
more efficient minimization, weight pushing also makes 
pruning more effective, because the bulk of the path weight is 
placed in its beginning and the decoder can discard 
unpromising paths as early as possible. However, Mohri et. al. 
[4] noted that pushing using the max operation of the tropical 
semi-ring for combining the weights of the paths from a node 
actually reduces the speed of the decoder. We observe the 
same performance degradation in our experiments. 

Figure 1 shows a typical path of the determinized and 
minimized integrated transducer HC � L �G constructed for 
the TC-STAR task as described in the following section. 

IV. NETWORK CONSTRUCTION 

A. Phone level transducers 

The experiment on the small BTEC task uses a class based 
language model. Representing class based language models 
with WFSTs has been already described in [14], but we 
include it here for sake of completeness. Assuming non-
overlapping word classes, a trigram model assigns 
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to a sequence of words W = (w1, w2, ..., wn), where (wi, c(wi)) 
is the word-class relation. This probability can readily be 
represented by the composition of the language model 
transducer G with a class transducer K in either the tropical or 
the log semi-ring. The structure of K is a simple loop, 
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mapping classes to their word members with the 
corresponding class conditional probability. However, the 
composed transducer G � K is non-functional because of the 
many-to-one nature of the word-class mapping. Therefore, it 
needs to be projected on the output side and then determinized. 
A consequent straightforward composition with a dictionary 
transducer L followed by determinization, weight pushing, 
and minimization results in an optimal transducer mapping 
phone units to words, together with the correct class history 
probability. 

B. Acoustic model transducers 

The acoustic model in both tasks uses pentaphones. To 
model the context dependencies, we converted the decision 
tree to a directly composed ‘HC’ transducer using the method 
described in Section III. The size of the HC transducer built 
for the EPPS task was too large to be composed into a 
network, much less for the resulting network to be 
determinized. To overcome this problem, we made use of the 
fact that the 16,000 different distributions on the leaves of the 
decision tree are mapped to only 4,000 GMMs in the semi-
continuous model. We replaced the distribution symbols with 
the corresponding GMM symbols, then determinized and 
minimized the transducer to obtain a new transducer HCGMM. 
The size of the transducer shrank by a factor of almost nine 
which allowed us to build an integrated recognition network. 
Table I shows the sizes of the optimized combined HC 
transducers. 

TABLE I 
SIZES OF THE COMBINED HC TRANSDUCER FOR BOTH TASKS. 

 Nodes Arcs 
BTEC HC 20,263 215,189 
TC-STAR HC  1,456,145 9,774,218 
TC-STAR HCGMM  157,261 1,127,032 

 
The sizes of the optimized H C � L �G transducers for both 

tasks are shown in Table II. 

TABLE II 
RECOGNITION TRANSDUCER SIZES FOR THE BTEC AND THE TC-STAR TASKS. 

 Nodes Arcs 
BTEC 1,633,975 2,178,331 
TC-STAR 13,755,867 21,409,106 

 
All network composition and optimization operations were 

performed with OpenFst [18].  

V. NETWORK LAYOUT 

The most common network layout implementation is a 
linear array of arc structures, sorted by the source node, with 
fields indicating the input GMM index, the output index, and 
the weight. A couple of improvements can be made on this 
network organisation to save space. Caseiro [7] employed a 
variable bit encoding that uses the properties of the network to 
reduce the average number of bits per state. Saon et. al. [6] 
and Olsen et. al. [11] described a similar network arrangement. 
The benefits of the network layout in [7] are negated by the 
memory alignment properties of most modern computing 
platforms, therefore Caseiro suggests accessing the edges in 
chunks during the decoding. This requires a new index layer 
to map from states to chunks.  

In contrast, we implemented a simpler approach which 
builds upon the fact that the network is not factored. 
Combined with the transducer / acceptor conversion in [6], 
this approach allows us to compress the small BTEC network 
to about half of its size on disk when encoded using 10 Bytes 
per arc. 

The HC transducer expands every context dependent 
triphone to a sequence of GMM indices. Many of those three 
state sequences are unique and produce linear arc chains in the 
transducer. Others are not unique, but participate in word 
phone expansions which could not be merged during the 
determinization and minimization of L �G. In [4], these 
chains are compacted into one arc by means of a second 
transducer mapping chains to HMM specification symbols. 
This way, only the compacted transducer is used in the 
decoding, the HMM specification symbols being expanded by 
the decoder on demand as part of the HMM evaluation 
routines. 

We do not have a variable length specification for the 
HMMs as in [4], but we still would like to reduce the impact 
of the linear arcs on the transducer size. Replacing the linear 
succession of arcs to one arc and expanding it on-the-fly 
would complicate the token management in the decoder. The 
alternative is to decrease the amount of memory required by 
an arc in a linear sequence. Indeed, the indices that label the 
states along the chains can be chosen in linear succession and 
only the beginning state index from the branch can be stored. 
A single bit taken from the symbol label can mark an arc 
involved in such a linear chain. When propagating a token, the 
transducer access program code knows the node index that 
contains the token, and calculates the new target node index 

Figure 1. Two paths from the TC-STAR network showing the GMM expansion of the word trigram “<s> we’ll </s>”. The two paths correspond to the two 
pronunciation variants of “we’ll” : “w x l” and “w I l”. The label notation is input:output/weight. The sum of the weights along both paths is the same and is 
given by the language model. The symbols “#1” and “#2” are the disambiguation symbols added to be able to determinize L � G as described in [4].  

w-m(58):�/1.456 
w-b(79):�/4.833 SIL-m:<s>/0 

w-m(36):�/1.606 I-b(180):we/1.224 

w-e(25):�/0.106 x-b(172):we/1.231 x-m(157):�/0.139 x-e(193):�/0 l-b(123):�/1.086 l-m(64):�/0 l-e(54):�/0 
SIL-m:</s>/0 

l-m(129):�/1.068 w-e(67):�/0 I-m(129):�/0 I-e(156):�/0.142 l-b(28):�/0 l-e(54):�/0 

#1:we’ll/0.852 

#2:we’ll/0.852 
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by incrementing the old one if it is propagating the token 
along a chain. This way the information necessary to store this 
arc becomes the triple (input, output, weight). Furthermore, 
weight pushing moves the weights on the branches of the 
transducer, leaving zero weight along the linear chains. Thus, 
the only information needed to store for an arc in a chain is 
the input/output pair. Moving the output side to the input side 
removes the necessity to store the transducer output alphabet, 
but can increase the size of the transducer because new arcs 
have to be added where both the input and the output side are 
different from epsilon. In our experiments, these additional 
arcs were very few as shown in Table III and made the 
conversion worthwhile. 

TABLE III 
RELATIVE TRANSDUCER SIZE INCREASE WHEN CONVERTED TO AN ACCEPTOR 

(COMPARED TO THE ORIGINAL TRANSDUCER SIZES IN TABLE II). 

 Additional Arcs Size Increase  
BTEC 104,761 4.8% 
TC-STAR 2,427,719 11% 

 
A depth first search writing the indices of the graph nodes 

as they are discovered would produce the desired state 
arrangement. Unfortunately, it has the potential to break a 
useful property of the decoder: the fact that it accesses the 
network in a breadth first manner. This would deteriorate the 
cache locality and possibly slow down the decoder. Therefore, 
an algorithm for arranging the nodes which performs breadth 
first search and switches to depth first search on the linear 
paths is a suitable alternative to get the best of both worlds. 

We have to note that this storage scheme can be applied 
without modification to the branches in the network by 
numbering all target nodes at a given branch with consecutive 
numbers. Unfortunately, this is not as efficient, because not all 
branch target nodes can be renumbered this way due to the 
cyclic nature of the network. Also, not all target nodes in a 
chain path can be consecutively numbered, namely the target 
node of the last chain has to retain its original index, because 
the in-degree of the last node is greater than one. This gives 
rise to the following categorization of all transducer arcs: 
 

a) branch arcs which can be consecutively numbered; 
[ConsBrnchArc] 

b) branch arcs which lead backwards into the network 
and cannot be consecutively numbered; [BrnchArc] 

c) chain arcs; [ChnArc] 
d) arcs that are last in a chain. [LstChnArc] 

 
The following tables show the percentage of arcs types 

contained in each of the networks we examined. 

TABLE III 
DISTRIBUTION OF THE ARC TYPES IN THE BTEC NETWORK 

 Arcs Percentage 
CnsBrnchArc 237,602 10.40 % 

BrnchArc 558,237 24.45 % 
ChnArc 1,203,028 52.69 % 

LstChnArc 284,226 12.45 % 

TABLE IV 
DISTRIBUTION OF THE ARC TYPES IN THE TC-STAR NETWORK 

 Arcs Percentage 
CnsBrnchArc 4,246,202 17.81 % 

BrnchArc 11,940,612 50.09 % 
ChnArc 6,763,075 28.37 % 

LstChnArc 886,933 3.72 % 
 
ChnArcs amount to more than half of the BTEC network 

and more than one fourth of the TC-STAR network.  The 
branch arcs in the TC-STAR network are more than the chain 
arcs, because of the high degree of sharing between the three-
state HMM sequences in the TC-STAR HC transducer. It 
would be desirable to apply the compression to both 
CnsBrnchArcs and ChnArcs at the same time; however, the 
simultaneous renumbering of both arc types is impossible in 
general. The reason is that chains can directly follow a branch, 
and thus break the consecutive ordering of the branch target 
nodes as shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table V shows the network sizes in Megabytes on the 

BTEC and TC-STAR experiments when saving only the input 
label for ChnArcs and the (target, label, weight) triple for all 
other arc types. A comparison is given with the memory usage 
of the recognition transducers, which are binary encoded with 
10 bytes per arc (4 bytes for the target node index, two 2 byte 
label fields and another 2 bytes for the weight). 

We compressed the BTEC and TC-STAR networks using 2 
bytes for the label of all ChnArcs. For all other arc types, we 
needed 4 Bytes for the target node index, 2 bytes for the label 
and 2 bytes for the weight. This encoding results in a 
compression rate of 4.8 bytes per arc for the small network 
and 6.3 bytes per arc for the large one. This method achieves 
higher efficiency than the one in [7] where the best storage 
rate was 5.2 bytes per arc on a recognition transducer with 
context independent phones and 7.2 bytes when encoding 
language model transducers.  

TABLE V 
MEMORY USAGE OF THE COMPRESSED NETWORKS 

 Standard ChnArc 
BTEC 20.7 MB 10.5 MB 
TC-STAR 227.3 MB 143.16 MB 

Figure 2. A branch in the network, followed by a chain. The arcs are labeled 
by GMM names. The chain {A-e(69), L-b(13)} follows a branch at node 2. 
Node 6 cannot be numbered 4, because the index is used by the target node of 
arc A-e(69). 
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The only function of the nodes in the transducer network is 
to link and combine alternative paths, because the observation 
distributions are put on the input side of the arcs and many 
arcs with different input symbols can end in a node. That is 
why after renumbering the network the node indices can be 
completely replaced by offsets in the array of arcs. This way, 
the setup becomes a permanently stored adjacency list graph 
representation, and the arc array is the only remaining 
structure that fully describes the transducer.  

VI. TOKEN PASSING 

Since the entire network construction work is offloaded in a 
pre-processing stage, the decoder can be written in a breadth-
first search style as a token passing algorithm [16].  The 
decoder implementation keeps two active token queues: the 
queue qcur processed in the current frame and the queue qnext 
which holds the propagated tokens from qcur. The current 
frame queue is visited in a linear fashion and for each child 
node the language model score is added to the token score. If 
the score falls within a beam width distance from the current 
best score, the GMM on the input side of the arc is 
immediately evaluated and accumulated in the token. The 
token is then queued for propagation in the next frame by 
placing it into qnext. This happens unless the arc target node 
has not been already occupied by a token. To verify this, we 
use a hash table mapping static indices to indices in qnext as 
described in Saon et. al. [6]. In case the state has been 
occupied, and the score of the old token is worse, it is replaced 
by the new token. 

At each new frame, the roles of qcur and qnext are swapped 
by exchanging their pointers and qnext has to be cleared. This 
cleanup operation is expensive as the queue can hold tens of 
thousands of tokens which have to be invalidated at each new 
frame. However, the cleanup work can be avoided by storing 
an additional frame index in the token queue, which indicates 
at which frame the token was placed in the queue. This way, 
the hash table lookup described in the previous paragraph is 
complemented by an inexpensive check to see if the token 
found in the target state was placed there earlier during the 
processing of the same observation frame.  

The decoder computes the acoustic scores as they are 
requested during the token propagation, avoiding duplicate 
acoustic score computation by storing the already computed 
scores in a cache. This is different from the prefix tree 
expansion and acoustic score computation implemented in 
IBIS. The IBIS decoder processes the frame in two steps: an 
expansion step, consisting of network expansion and token 
propagation, and a score computation and token pruning step.  
In the first step, the tokens are propagated across word and 
phone boundaries, and the relevant beams are applied. At the 
same time, the acoustic scores are requested for computation.  

The second step computes the requested scores and applies 
them to the tokens, involving a second pass over the active 
tokens. We implemented this two-step method in the SWIFT 
decoder and compared the speed of both strategies. The results 
showed that the after-frame score evaluation is slower by 

relatively 5-10%. Nevertheless, the SWIFT decoder using the 
late evaluation scheme is still faster than IBIS. 

VII. EXPERIMENTS AND RECOGNITION RESULTS 

We started by tuning the IBIS decoder on the small BTEC 
task. After finding the best combination of language model 
weight and word insertion penalty on the development set, we 
proceeded to determine the relationship between Real Time 
Factor (RTF) and Accuracy (WA) shown on Figure 3. We 
then did the same for the SWIFT decoder. It can be seen from 
Figure 2 that even though the results are very similar, the 
SWIFT decoder converges faster to the optimal recognition 
rate. For example, at 79.5% WA, the SWIFT Decoder is 50% 
faster than IBIS. These experiments were performed on an 
Intel(R) Core(TM) 2 Duo CPU with each core running at 
2.33GHz. IBIS had a peak resident memory usage at 53 MB, 
while the SWIFT Decoder’s memory footprint was 52 MB. 

We also performed different experiments with the SWIFT 
decoder to study the impact of pushing in the log and in the 
tropical semi-ring. The results show that the network 
constructed in the tropical semi-ring significantly slows down 
the decoder even given the small BTEC task. A plausible 
explanation for this is the Viterbi maximum approximation 
used when calculating the node potentials during weight 
pushing. The log semi-ring would sum the weights 

when combining the paths, and this way correctly implement 
the “or” semantics for the path probabilities given by the 
language model. Furthermore, the node potentials will be 
higher than those when using the max approximation. This 
results in more weight being pushed to the beginning of the 
network. 

Figure 4 shows the corresponding WA/RTF relationship for 
the large vocabulary EPPS task. There we see results 
consistent with the BTEC task, although the improvement is 
more moderate. For example at 76.5% WA, the relative speed 
improvement is close to 26%. The difference between the 
decoders disappears at real-time factors larger than 3.5. 

 

Figure 3. Comparison of SWIFT with the prefix-tree decoder Ibis on the 
BTEC corpus. We also show comparison of two networks whose weights are 
pushed in the log and in the tropical semi-ring respectively. 
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VIII. CONCLUSIONS AND FUTURE WORK 

In this paper we described the design and implementation 
of a WFST based decoder called SWIFT (Speedy WeIgthed 
Finite-state Transducer).  The decoder is supposed to support 
multiple platforms, i.e. its design and implementation is meant 
to work out on PCs as well as on resource-constrained devices 
with limits in both, processing power and memory. We 
described new solutions to drastically reduce the network size 
by combining the factoring idea from [4] with a histogram 
analysis on the arcs in the network to construct a new network 
layout which does not hamper recognition speed and is simple 
to implement and use. Furthermore, we achieved a significant 
memory consumption reductions obtained by an innovative 
network specific storage layout optimization. 

The resulting decoder was evaluated on two very different 
setups, a small vocabulary domain restricted conversational 
travel phrases task (BTEC) and a large vocabulary task on 
European Parliament Speeches (EEPS). The results of the 
SWIFT decoder were also compared to the JRTk IBIS 
decoder. In both tasks SWIFT achieved an up to 50% speed-
up over IBIS. 

Overall, we see significant improvements in recognizing 
both the relatively small BTEC task and the EPPS task with 
large acoustic and language models. The EPPS experiments 
showed that large tasks are still quite challenging, mostly due 
to the memory requirements for the determinization in the 
final network optimization step. Therefore, in the near future 
we plan to focus on adding dynamic composition to the 
decoder and optimizing the determinization in the final 
processing step. The arc compression does not pose a problem 
for the dynamic composition, because, similar to the decoder, 
it accesses the arcs of the transducers being composed in a 
breadth first search style. However, BrnchArcs might prove to 
be more suitable for compression in long span language 
models, because of the high average forward branching factor 
of their transducer approximations. 

ACKNOWLEDGEMENTS 

The authors wish to thank Thilo Köhler and Christian 
Fügen for providing the BTEC system and their active support. 

We are also grateful to Sebastian Stüker for making the 
speaker adapted first pass of University of Karlsruhe’s 
submission to the 2007 TC-STAR evaluation available to us.  

REFERENCES 
[1] S. Kanthak, H. Ney, M. Riley and M. Mohri. “A comparison of two 

LVR search optimizations techniques.” ICSLP’02, Denver, Colorado, 
USA, 2002. 

[2] H. Dolfing. “A comparison of prefix tree and finite-state transducer 
search space modelings for large-vocabulary speech recognition,” 
ICSLP’02, Denver, Colorado, USA, 2002. 

[3] H. Soltau, F. Metze, C. Fügen, and A. Waibel. “A One Pass-Decoder 
Based on Polymorphic Linguistic Context Assignment”, ASRU, Trento, 
Italy, 2001. 

[4] M. Mohri, F. Pereira, and M. Riley. “Weighted finite-state transducers 
in speech recognition”, Computer Speech and Language, 16:69–88, 
2002. 

[5] V. Goffin, C. Allauzen, E. Bocchieri, D. Hakkani-Tür, A. Ljolje, S. 
Parthasarathy, M. Rahim, G. Riccardi and M. Saraclar. “The AT&T 
Watson Speech Recognizer”, Interspeech ‘05, Lisbon, Portugal, 2005. 

[6] G. Saon, D. Povey, and G. Zweig. "Anatomy of an extremely fast 
LVCSR decoder", Interspeech ‘05, Lisbon, Portugal, 2005. 

[7] D. Caseiro and I. Trancoso. “Using Dynamic WFST Composition for 
Recognizing Broadcast News”, ICSLP’02, Denver, Colorado, USA, 
2002. 

[8] T. Hori, A. Nakamura.”Generalized Fast On-the-fly Composition 
Algorithm for WFST-Based Speech Recognition”, Interspeech ‘05, 
Lisbon, Portugal, 2005. 

[9] O. Cheng, J. Dines, M. M. Doss. “A Generalized Dynamic 
Composition Algorithm of Weighted Finite-State Transducers for 
Large Vocabulary Speech Recognition”, ICASSP ‘07, Honolulu, 
Hawaii, USA, 2007. 

[10] J. McDonough, E. Stoimenov, D. Klakow. “An Algorithm for Fast 
Composition of Weighted Finite-State Transducers”, ASRU ‘07, Kyoto, 
Japan, 2007. 

[11] J. Olsen, Y. Gao, G. Ding, X. Yang. “A Decoder for Large Vocabulary 
Continuous Short Message Dictation on Embedded Devices”, 
ICASSP ’08, Las Vegas, Nevada, USA, 2008. 

[12] E. Bocchieri, D. Blewett. “A Decoder for LVCSR Based on Fixed-
Point Arithmetic”, ICASSP, Toulouse, France, 2006. 

[13] D. Moore, J. Dines, M. M. Doss, J. Vepa, O. Cheng, T. Hain. “Juicer: 
A Weighted Finite-State Transducer Speech Decoder”, MLMI ‘06, 
Washington DC, USA, 2006. 

[14] C. Allauzen, M. Mohri, B. Roark, and M. Riley. “A Generalized 
Construction of Integrated Speech Recognition Transducers”, ICASSP 
‘04, Montréal, Canada, 2004. 

[15] E. Stoimenov, J. McDonough. “Memory Efficient Modeling of 
Polyphone Context with Weighted Finite-State Transducers”, 
Interspeech ‘07, Antwerp, Belgium, 2007. 

[16] S.J. Young,  N.H. Russell ,  J.H.S. Thornton. “Token Passing: a Simple 
Conceptual Model for Connected Speech Recognition Systems”, 
Technical Report, University of Cambridge, 1989. 

[17] T. Köhler, C. Fügen, S. Stüker, and A. Waibel, “Rapid Porting of ASR 
Systems to Mobile Devices”, Interspeech ‘05, Lisboa, Portugal, 2005. 

[18] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, M. Mohri. “OpenFst: A 
General and Efficient Weighted Finite-State Transducer Library”, 
CIAA ‘07, Prague, Czech Republic, 2007. 

[19] G. Kikui and E. Sumita and T. Takezawa and S. Yamamoto.  “Creating 
corpora for speech-to-speech translation”, Interspeech ‘03, pp. 381-
384, Geneva, Switzerland, 2003. 

[20] Technology and Corpora for Speech to Speech Translation (TC-STAR). 
Integrated Project funded by the European Commission, Project No. 
FP6-506738, 2004-2007. http://www.tc-star.org. 

[21] A. Stolke. “SRILM – An Extensible Language Modeling Toolkit”, 
ICSLP ’02,  Denver, Colorado, USA, 2002 

[22] M. Mohri and M. Riley. “Network optimizations for large vocabulary 
speech recognition”. Computer Speech and Language, 16:69-88, 2002 

[23] M. Schuster and T. Hori. “Efficient Generation of High-order Context-
Dependent Weighted Finite-State Transducers for Speech Recognition”, 
ICASSP ’05, Philadelphia, PA, USA, 2005 

 
Figure 4. Comparison of the IBIS prefix-tree decoder and the SWIFT 
decoder on the large vocabulary EPPS task.  
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