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Abstract
Large scale ASR systems are trained on thousands of hours of
speech. Usually, many of these training data were automatically
transcribed by another ASR system due to a lack of manual tran-
scriptions and a lack of resources to transcribe them. Systems
trained in such a fashion are biased towards the transcription
system. In the past, confidence models have been investigated
to exclude data from training. We propose to investigate areas
of low confidence by extending our previous work. For this
purpose we aggregate potential errors of ASR systems by as-
cribing a list of attributes to each potential error and find a set
of attributes which best describe the errors encountered on an
automatically transcribed set. We call these characteristic sets
of attributes Error Signatures. Examples of attributes are word
identity, phonemes, acoustic models, word context, speaker id,
and language id. For each Error Signatures, an error ratio is
computed, giving the probability that the signature properly de-
scribes the error. Error ratios and occurrence frequencies are
used to sort the signatures and present them to an expert to fix
the Error Signatures underlying shortcomings of the ASR sys-
tem.

1. Introduction
Much of the previous work on the topic of system analysis and
error assignment in automatic speech recognition needs super-
vision in form of reference transcriptions to conduct their in-
vestigation. Earlier work by Chase [1] and Nanjo et al. [2] fo-
cused on sentence by sentence error assignment given an ASR
hypothesis and reference. We investigate an approach to error
analysis which does not require reference transcriptions. Most
large scale ASR systems trained today are based on thousands
of hours of speech without reference transcriptions, employing
confidence models to exclude potentially erroneous segments
from the training data, keeping the systems from deteriorat-
ing. In this work we want to analyze regions of low confidence,
group them together and report on commonalities, without rely-
ing on reference transcriptions. The approach can be integrated
into an iterative training scheme: after finishing a training iter-
ation the untranscribed training data is decoded with the latest
ASR system and an error profile with error signatures is gen-
erated. The error profile can then be consulted by an expert to
pinpoint shortcomings and improve the ASR system.

2. Error signatures
This section introduces the notion of error signatures, how to
obtain them, and how to use them to identify causes of errors
in an ASR system. Each signature consists of a set of attribute-
value pairs to identify potentially problematic words, examples

of attributes are:

• word identity

• phonemes

• acoustic models

• word context

• word confidence score

• language id/language id context

Additional attributes, such as signal-to-noise ratio or part-
of-speech tags, can be added on the fly to our framework, by ei-
ther extending the dictionary and adding additional word-level
attributes or supplying sentence-level attributes during the col-
lection of statistics on the different attributes, as described in
Section 2.1.

The process of finding error signatures is similar to con-
cept discovery in data mining [3]. In data mining concepts are
discovered by finding patterns of jointly occurring attributes.
Transferring this concept to an ASR hypothesis, we want to
find a set of attribute-value pairs which jointly appears in low
confidence words and is only rarely found in words with high
confidence values. We refer to such a set of attribute-value pairs
as an error signature.

We call the procedure of finding error signatures on a data
set error profiling. The process of obtaining the error signa-
tures is carried out in two steps. In the first step, as described
by Evermann et al. [4], and attribute-value pairs are confidence
scores are computed for each word in the 1-best hypothesis of
each utterance. We assume that low confidence scores are in-
dicative of an error. In a subsequent step, attribute-value pairs
are clustered to error signatures.

2.1. Collecting statistics of attributes

The input to our framework is the 1-best hypothesis of all sen-
tences in the training or development set. Since no reference
transcription is available as in the work by Chase [1], we can-
not derive error regions from the hypothesis and have to rely
on word confidence scores extracted from the decoding lattice.
After extracting word confidence scores for each word in a hy-
pothesis, additional attribute-value pairs are assigned to it.

Table 1 gives an excerpt of the attribute-value pairs as-
signed to the hypothesis segment ”都是” from the segment
”都都是 SIL” in the SEAME corpus [5]. The five phoneme
attributes /d/ /o/ /w/ /S/ /i/ were added, corresponding to
the segments pronunciation in the dictionary. The segment is
preceded by a Mandarin word (-1=MAN) and specifically pre-
ceded by the segment ”都” (-1=都). Furthermore, the word is
assigned the language id ”MAN”..



Table 1: Attributes for ”都是” from a segment in the SEAME
corpus (”都都是 SIL”)..

Category Attributes
Confidence 0.4
Token 都是
Phonemes /d/ /o/ /w/ /S/ /i/
Context -1=MAN -1=都 +1=SIL
Language Id MAN

2.2. Computing error signatures

After all utterances are processed and attributes have been as-
signed to each word in the hypothesis, we employ a bottom-up
greedy clustering to find the error signatures which best explain
the errors we encounter in our data set. A prerequisite for the
clustering process is the ability to compare two error signatures
and decide if one signature is a better fit for the potential errors
than the other.

In data mining two measures are used for this purpose: a
concept’s support and confidence. Support is the number of
hypothesis words matching the error signature. We derive the
confidence in an error signature by computing the average error
probability of all matching hypothesis words, where the error
probability for any given word is derived from its confidence
score. We refer to this measure as the error ratio. It can be
interpreted as the probability that a hypothesis word with that
signature was misrecognized.

The clustering algorithm we employ to find the error sig-
natures uses only discrete attributes, testing for the presence
or absence of an attribute-value pair. In order to make use of
continuous-valued attributes, such as word confidence score,
the value range of these attributes has to be discretized.

We chose to use the minimum entropy partitioning algo-
rithm introduced by Fayyad et al. [6]. This greedy algorithm
recursively chooses the partition of the value range with the
biggest decrease in entropy. The algorithm starts with one par-
tition containing the complete value range and proceeds parti-
tioning until either the information gain of an additional parti-
tion or the occupancy count of the resulting partitions fall below
a threshold.

Initially we start the clustering process with one error sig-
nature for every attribute-value pair whose support exceeds a
threshold. New error signatures are created by recursively ex-
panding the list of attribute-values of previous error signatures
with an additional attribute-value pair. Criteria for these newly
created error signatures are:

• an error signature must cover a minimum number of er-
ror words (min. support)

• probability of error signatures indicating an error has to
exceed a certain threshold (min. error ratio)

• there is no error signature which consists of a subset of
attribute-values to the error signature in question and has
a higher error ratio

• there is no error signature which represents the same
group of words and has a higher error ratio (removal of
dominated error signatures)

The clustering process stops if no error signature can be
expanded by an additional attribute-value pair without violating
one of these criteria. To speed up the clustering process the

attribute-value pairs which are considered next as a potential
addition to an existing signature are sorted in ascending order
of frequency. Processed in such a way attribute-value pairs with
low frequency count can be processed quickly since their error
signatures quickly fall below the minimum support requirement
and can be disregarded from other error signatures since any
error signature not violating any of the conditions should have
been found while processing the attribute-value pair in the first
place.

The algorithm to obtain the error signatures is implemented
in our in-house toolkit BioKIT [7] which we also used to ob-
tain the decoding results. Examples of error signatures are pre-
sented in our experiments on the SEAME corpus and ILSE cor-
pus in Section 5.

3. Error Correction
After error signatures have been computed it is up to the ex-
pert to scan the list of signatures, and deduce which component
of the system could be responsible for producing the observed
hypotheses. Furthermore, the expert has to conclude if the prob-
lem can be fixed my modifying a component of the ASR system
and if that is the case which changes are most likely to fix the
encountered problem.

To keep the required amount of manual work to a minimum,
the error signatures presented to the expert have to be limited
to a select few meaningful signatures. Therefore, we employed
heuristics to filter the computed error signatures. The data for
the figures in this section are derived from the 19 hour baseline
system we trained on the SEAME corpus, which is presented in
Section 5.1. Error signatures were computed on the remaining
39 hours of speech from the original SEAME corpus training
set, as described in Section 4. The total number of error signa-
tures without filtering, with the exception of a minimum number
of samples per word as defined in the error signature algorithm
in Section 2, is 31, 332.

3.1. Error Ratio filter

Figure 1 depicts all error signatures and their corresponding er-
ror ratio, as they were found on the 39 hours of the SEAME
corpus training set, set aside for computing error signatures. It
shows that there are only a few error signatures who are worth
looking into. Any error signature which has an error ratio be-
low or equal to 0.5 will potentially introduce more errors than
fix existing ones by trying to remove its underlying cause of er-
ror. By applying a threshold of 0.5 to the error ratio of each
error signature, the number of error signatures which are of in-
terest to an expert for error correction are reduced from 31, 223
to 521.

3.2. Frequency filter

Since the number of error signatures that can be viewed by an
expert should be limited to a select meaningful few, the po-
tential impact of each error signature on the error rate of the
system should be as big as possible. Thus, any error signature
selected for further investigation has to represent a minimum
number of matching words of the data set being analyzed. The
total number of error words in the 39 hour data set amounts to
500, 051 distributed over 30, 294 utterances. Limiting the min-
imum number of affected utterances to at least 0.3% of the 39
hours would require a minimum number of matching words for
each error signature to at least 91, reducing the 31, 223 error
signatures to 22, 927, see Figure 2. In combination with the
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Figure 1: Error signatures on 39 hours portion of SEAME train-
ing corpus sorted by their error ratio.

error ratio filter from Section 3.1, the number of viable error
signatures is reduced to 150 or 0.5% of the original error sig-
natures.
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Figure 2: Error signatures on 39 hours portion of unsuper-
vised SEAME training corpus sorted by the number of matching
words. Y-axis is in logarithmic scale.

4. Database
We applied the proposed error signature algorithm to the two
corpora described in this section.

4.1. SEAME corpus

The code-switching speech corpus we used is called SEAME
(South East Asia Mandarin-English). It has been recorded in
Singapore and Malaysia by Lyu et al. [5] and contains sponta-
neously spoken interviews and conversations. Originally, it was
used for the research project “Code-Switch”which was jointly
performed by Nanyang Technological University (NTU) and
Karlsruhe Institute of Technology (KIT). The corpus contains
about 62 hours of audio data and manual transcriptions which
are separated into training, development and evaluation set (re-
fer to Table 2).

The words can be categorized into four language classes:

Mandarin (58.6% of all tokens), English (34.4% of all tokens),
particles (Singaporean and Malayan discourse particles, 6.8%
of all tokens) and other languages (0.4% of all tokens). The av-
erage number of code-switching events between Mandarin and
English is 2.6 per utterance. The average duration of monolin-
gual English and Mandarin segments is only 0.67 seconds and
0.81 seconds, respectively. In total, the corpus includes 9,210
unique English and 7,471 unique Mandarin words.

Table 2: The SEAME database.

Train set Dev set Eval set
#Speakers 157 8 8
#Tokens 681k 28k 14k
Duration (hrs) 58.4 2.5 1.1

To extract error signatures in an unsupervised fashion we
further split the SEAME training set into two parts. The set
was split such that the ratio of female to male, Malayan to Sin-
gaporean speakers, and conversational style to interview style
recordings are kept roughly the same. The first portion of
19 hours is used to train the baseline acoustic and language
model the second, larger portion is used to extract the error sig-
natures and perform unsupervised acoustic and language model
training. Details of the resulting two parts are given in Table 3.

Table 3: Separation of SEAME training data into portions for
supervised and unsupervised training.

Set #Speakers #Tokens Duration (hrs)
Supervised 58 235k 19.1
Unsupervised 99 446k 39.3
Total 157 681k 58.4

4.2. ILSE corpus

For the ILSE study [8, 9], an interdisciplinary team at Heidel-
berg University was given the task of collecting a large-scale
investigation into the impact of aging into several aspects of
daily life. During the course of 20 years they conducted inter-
views and medical examinations on about 1,000 participants.
The collected German speech corpus was partly digitized and
transcribed. Details of the corpus and the sets we divided the
corpus into is given in Table 4.

Table 4: The ILSE corpus.

Training Development Evaluation
#speakers 68 10 14
#Tokens 2,000k 270k 500k
Duration (hrs) 265.4 35.9 62.0

5. Experimental setup and results
In our experiments we focused on the above two corpora to
show our approach of error profiling. To demonstrate the useful-
ness of our approach we compare the error rates using unsuper-
vised acoustic model training and language model adaptation
based on confidences against unsupervised training with imple-
mentation of error fixes derived from the found error signatures.



5.1. SEAME corpus

5.1.1. System setup

Recognition results were obtained in a multi-pass system. The
last pass is a deep neural network (DNN) acoustic model trained
with the Kaldi toolkit [10] using an fMLLR adaptation from the
previous pass. The fMLLR transforms were created in a first
pass by using Kaldi trained Gaussian Mixture Models. The in-
put for the DNN is a 440-dimensional feature vector consisting
of 11 stacked 40 dimensional LDA transformed stacked MFCC
feature vectors.

The DNN is trained by first performing pre-training, fol-
lowed by 13 iterations optimizing cross-entropy and finally four
iterations of state-level minimum Bayes risk (sMBR) sequence
training [11]. The neural network consists of 6 hidden layers
with 2,048 nodes each and an output layer with 3,194 nodes.

The system is trained only on the 19 hours of the supervised
training set. The baseline language model is a Kneser-Ney tri-
gram estimated on the supervised training set’s text and mono-
lingual English and Mandarin texts taken from NIST using the
SRILM toolkit [12]. The perplexity on the SEAME develop-
ment set is 349.6. The perplexity on the unsupervised training
set is 413.9. Decoding results were obtained using BioKIT [7].

5.1.2. Baseline

In a first step, the initial system trained on 19 hours of speech is
used to decode the unsupervised training set of 39 hours. The
mixed error rate on that unsupervised training set is 37.85%.
Figure 3 shows the confidence distribution in deciles over the
unsupervised training set.
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Figure 3: Unsupervised training data split into decile confidence
bins after decoding and confidence estimation.

5.1.3. Finding error signatures

We apply the error signature algorithm to the unsupervised
training set and filter the resulting error signatures according
to the steps described in Section 3. From the resulting 150 error
signatures we pick the error signatures with the highest error
ratios for further analysis. Chosen error signatures are shown
in Table 5 and the following list describes the steps we took to
improve the model, based on these error signatures:

• Signature #1: Investigating the dictionary it was strik-
ing that pronunciations for ”like” and ”kite” where ”/l/

/ay/” and ”/k/ /ay/” respectively. The cause for these
faulty pronunciations was due to an error in the auto-
matic generation of pronunciations which also affected
other words in the vocabulary, which ended in plosives
such as /t/, /k/, and /p/. Two clean the dictionary for
decoding in a first step only pronunciations of English
words were kept which are already present in the train-
ing dictionary. In a second step, frequencies of all words
that appeared during decoding on the 39 hour unsuper-
vised training set were counted. Afterwards, we counted
the total number of appearances for each word and, af-
ter scanning the list, set a threshold of 15% of how fre-
quently each pronunciation had to appear to remain in
the final decoding dictionary. The number of entries in
the dictionary was reduced from 52,225 to 35,645 while
keeping the vocabulary size constant.

• Signature #2-#3: No specific cause could be identi-
fied for signatures #2 and #3. Sentences matching #3
were excluded from unsupervised acoustic model train-
ing. Sentences matching signature #2 were shortened to
exclude the last two words.

To estimate the impact of our fixes we compare two sys-
tems, one trained with utterances from the unsupervised training
set whose confidence score exceeds 0.8 [13], the other system
additionally using the fixes derived from the error signatures.
Mixed error rates of the adapted systems and baseline are pre-
sented in Table 6. The impact of selecting different amounts of
data for unsupervised acoustic modeling and language model-
ing adaptation based on signatures #2-#3 led to differences in
performance on the development set. These differences were
not significant on the development set at a significance level of
0.05. Only changing the decoding dictionary had a noticeable
impact on system performance. By applying the fixes to the dic-
tionary we achieved a significant reduction in MER (p = 0.007)
from 29.1% on the adapted baseline system to 28.3% when us-
ing error signatures.

5.2. ILSE corpus

In this section we present the experiments conducted on the
ILSE corpus and the improvements we achieved by applying
fixes to errors found with the error signatures. In the previous
experiment on SEAME the computation of the error ratio was
directly derived from the words’ confidence scores matching the
signature in question. For the ILSE corpus we adapted the error
ratio computation by computing the minimum confidence score
of each attribute-value pair for each word. The reason is that in
this way even if the confidence score of a particular word is
high, low confidence phonemes or acoustic models within that
word can be identified.

5.2.1. System setup

The acoustic model is a deep neural network with the same pre-
processing as described in Section 5.1.1. Since no speaker in-
formation is available in the interview files, the fMLLR trans-
form is omitted, resulting in a one pass system. The dictionary
is build based on the transcriptions in the training data and con-
tains 74,423 entries, the size of the vocabulary is 71,889.

5.2.2. Baseline

Due to the long audio files of up to 45 minutes and their accom-
panying transcriptions being erroneous and not verbatim with



Table 5: Examples for error signatures found on the unsupervised training set of the SEAME corpus. Word on the right hand side of
word confusion’s column is the word in the 1-best hypothesis.

Sig.# Error-Ratio #Occ. Error-Signature Word confusions
1 0.79 124 +1=</s> AM no. 274 的→ kite direct→ like
2 0.76 147 +2=</s> 0=”而已” yen→ ”而已” ”来了”→ ”而已”
3 0.75 382 min. duration [noise] ”现在”→ [noise] center→ [noise]

Table 6: Mixed error rates on evaluation (development) set, comparing baseline system with system using error signatures on the
SEAME corpus.

System Baseline Confidence ≥ 0.8 Confidence ≥ 0.8 and error signatures
no adapt 30.36% (36.22%) - -
AM adapt - 29.25% (34.88%) 29.10% (35.28%)
AM & LM adapt - 29.09% (34.53%) 28.86% (34.85%)
AM & LM & dict adapt - - 28.29% (34.34%)

no timestamps, forced alignment cannot be applied successfully
to train an initial system. Therefore, the initial system we per-
form our error signature algorithm on was trained on a subset
of the 265 hours of training data. Using a long audio align-
ment procedure we extracted segments from the audio whose
transcriptions are correct with a high confidence. Ultimately,
the system we employ is trained on 44 hours of training data.
The language model used for decoding is build on the reference
transcriptions of the complete training set.
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Figure 4: Training data split into decile confidence bins after
decoding and confidence estimation.

5.2.3. Finding error signatures

Since the condition of the manual transcriptions of the train-
ing set is such that they only loosely match the actual content,
we chose to conduct our experiments on the complete 265 hour
training set. Due to the extensive size of both development and
test set we only report word error rates on a subset of both de-
velopment and evaluation set. From the original development
and evaluation sets, we selected the first 45 minutes of each in-
terview as development and evaluation set.

Table 7 shows the error signatures we found and imple-
mented fixes for. The fixed error signatures were among the 70
most promising signatures, 25 of which where concerned with
the noise acoustic model. The following list shows the fixes
we implemented to remedy the problems identified by the error
signatures:

• Signature #1: The acoustic model with id 140 models
the phoneme /n/ and frequent potential confusions of sig-
nature #1 are with the word ”und” which should only
rarely appear at sentence ends. Investigating the lan-
guage model probabilities for the bigram ”und </s>”,
turned out that this bigram is far more likely than most
other bigrams with the word ”und”. Further looking at
the training text used for estimating the language model
probabilities, we found that the text contains a sizeable
number of partial sentences. To remedy this situation
we removed sentence end tags from all sentences end-
ing in the word ”und”. The language model was then
re-estimated.

• Signature #2-#5: The noise token frequently appears
in areas of low confidence. We noticed that signatures
regarding the noise token contained more than the ex-
pected five acoustic models for the five state noise HMM.
Further investigation of the acoustic model turned out
that the noise model had erroneously been trained as a
context-dependent model. In the new model we retrained
noise as a context-independent model.

• Signature #6: This signature mostly concerns the word
”haben” with only one pronunciation in the dictionary:
”/h/ /a/ /b/ /etu/ /n/”. The last two phonemes are min-
imum duration only (duration of three frames), which
indicates that the actual pronunciation contains less
phonemes. As a solution we added another colloquial
pronunciation of ”haben” to the dictionary.

• Signature #7: The acoustic model with id 2805 in the
error signature models the phoneme /r/. The signa-
ture shows that the word ”oder”, which is quite frequent
in the German language, is often confused with other
words. The dictionary contained two pronunciations for
this word, the first one being ”/ol/ /d/ /atu/” and the sec-
ond one ”/ol/ /d/ /etu/ /r/”. Since the second pronunci-
ation is rather unlikely of being correct it was removed
from the dictionary.

• Signature #8-#9: The last two signatures are words
whose pronunciations either end in ”/r/ /etu/ /n/” or ”/d/
/etu/ /n/”. As a fix to this problem we added additional
pronunciations to the dictionary which more closely
match the actual pronunciation by omitting the phoneme
/etu/.



Table 7: Examples for error signatures found on the training set of the ILSE corpus. Word on the right hand side of word confusion’s
column is the word in the 1-best hypothesis.

Sig.# Error-Ratio #Occ. Error signature Word confusions
1 0.99 1,251 +1=</s> AM no. 140 die→ und möbeln→ und
2 0.98 1,149 AM no. 2542 SIL→ [noise]
3 0.98 773 AM no. 2673 AM no. 850 [redacted]→ [noise]
4 0.98 10,038 AM no. 349 AM no. 4531 beste→ [noise] bleibe→ [noise]
5 0.97 2,381 AM no. 4458 [redacted]→ [noise]
6 0.96 1,240 0=/h/ AM no. 277 [unk]→ haben daheim→ haben

min. duration /etu/ min. duration /n/ oben→ haben feilen→ haben
7 0.94 634 0=oder AM no. 2805 [redacted]→ oder tätigkeit→ oder
8 0.94 763 AM no. 1244 AM no. 3098 drin→ besonderen marschiert→ marschieren

AM no. 4360 min. duration /r/ überall→ waren das→ verfügbaren
9 0.94 1,902 AM no. 1334 AM no. 3098 hatten→ werden freunden→ geworden

AM no. 697 min. duration /etu/ gut→ wurden zum→ worden

Table 8: Mixed error rates on evaluation (development) set, comparing baseline system with system using error signatures on the ILSE
corpus.

System Baseline Confidence ≥ 0.8 Confidence ≥ 0.8 and error signatures
no adapt 64.82% (67.11%) - -
AM adapt - 64.02% (66.54%) 63.98% (66.05%)
AM & LM fix - - 63.98% (65.77%)
AM & LM & dict fixes - - 63.68% (65.50%)

Similar to our experiments on the SEAME corpus we
trained two new systems based on the utterance-level confi-
dence scores depicted in Figure 4. The total amount of train-
ing data for the new models is 47 hours. Word error rates for
the baseline system and our improved systems are shown in Ta-
ble 8. Since the additional amount of selected training data was
so small, the language model was not adapted. Even though the
acoustic model and language model fixes had an impact on the
development set, the evaluation set performance increase was
marginal. Only the changes to the dictionary consistently im-
proved the system performance. In conclusion we achieved a
significant (p = 0.012) word error rate reduction of 0.53% rel-
ative.

6. Conclusion
We introduced an algorithm for error analysis, which based on
the lattices of an ASR system, groups low confidence words
together using various attributes. We showed that the resulting
error signatures were useful to improve ASR systems build on
the SEAME code-switching corpus and the ILSE corpus. We
were able to significantly improve the error rate by 2.75% and
0.53% respectively relative compared to models trained with
unsupervised acoustic model training only. As future work we
plan to apply the algorithm iteratively to see if additional errors
can be identified and how many iterations are needed until no
more errors can be found.
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