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Abstract

This article gives an overview of the EMG-UKA corpus, a cor-
pus of electromyographic (EMG) recordings of articulatory ac-
tivity enabling speech processing (in particular speech recog-
nition and synthesis) based on EMG signals, with the purpose
of building Silent Speech interfaces. Data is available in mul-
tiple speaking modes, namely audibly spoken, whispered, and
silently articulated speech. Besides the EMG data, synchronous
acoustic data was additionally recorded to serve as a reference.
The corpus comprises 63 recorded sessions from 8 speakers, the
total amount of data is 7:32 hours. A trial subset, consisting of
1:52 hours of data, is freely available for download.

Index Terms: Electromyography, Speech Data Corpus, Silent
Speech Interfaces

1. Introduction

This paper presents the EMG-UKA corpus of surface elec-
tromyographic (EMG) and acoustic recordings of speech, for
the purpose of investigating EMG-based speech processing, in
particular speech recognition and synthesis. The corpus con-
tains 7:32 hours of synchronous EMG and acoustic data, com-
ing from 63 recording sessions of 8 speakers, in English lan-
guage. Data was recorded in three different speaking modes,
namely audibly spoken, whispered, and silently articulated
speech (see section 2.1 for a definition).

This database was created as part of our efforts to develop
an EMG-based Silent Speech interface, i.e. a system which uses
the EMG recordings of articulatory muscle activity to process
speech even when no sound is heard or created [1]. Such sys-
tems are applicable in situations where nondisturbing, confiden-
tial communication is desired, as well as for speech-disabled
persons, e.g. laryngectomees.

The electromyographic signal stems from muscle activity:
Whenever a muscle contracts, a small electric potential is gener-
ated. This signal is captured by electrodes; in our case, we used
small, nonintrusive surface electrodes to capture EMG signals
from a user’s face while speaking. Since this can be done even
when no speech sound is heard or created, a Silent Speech inter-
face can be realized based on the EMG signal. Among current
Silent Speech technologies, this approach has been judged fa-
vorably in terms of usability, non-invasiveness, potential, and
cost [1]. The EMG recording is fully passive, i.e. an existing
biophysiological activity is measured. We never apply any kind
of electric current to the human body; thus EMG can be used on
an everyday basis, even by unexperienced persons, and outside
a laboratory environment.

Based on the EMG-UKA data corpus, our group investi-
gated several key challenges in EMG-based speech recogni-
tion and processing, including optimal modeling of articula-
tory activity [2], intonation generation [3], compensation for
variations between recording sessions [4] and discrepancies be-
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tween speaking modes, in particular, between audibly spoken
and silently articulated speech [5, 6, 7, 8]. In section 5, we re-
port reference Word Error Rates for several of the recognition
scenarios.

A trial subset of the EMG-UKA corpus, consisting of
112 minutes of data, is available to everybody free of
charge from http://csl.anthropomatik.kit.edu/
EMG-UKA-Corpus.php. By the publication of this dataset,
we hope to foster further improvements of the EMG-based
Silent Speech interface, as well as to provide a reference
database for benchmarking different technical approaches. For
the full version of the data, please contact the third author (Tanja
Schultz).

This paper is organized as follows: In section 2, we describe
the contents of the EMG-UKA corpus, the recording setup is de-
tailed in the subsequent section 3. Section 4 describes the data
contained in the corpus distribution, this includes the EMG and
acoustic data as well as supplementary information. Section 5
reports baseline Word Error Rates for different EMG recogni-
tion tasks, and section 6 concludes the paper.

2. Corpus overview
2.1. Content of the recordings

The EMG-UKA corpus consists of surface electromyographic
and acoustic recordings of read speech in English language,
from the Broadcast News domain. Data was recorded in three
different speaking modes, namely audibly spoken, whispered,
and silently articulated speech. The recording setup has been
in use since 2005 and is the result of extensive studies [9, 10];
it is described in detail in section 3. All data is segmented at
the utterance level. We additionally computed word-level and
phone-level alignments, which are available together with the
EMG and acoustic data.

Audible speech is speech with normal voicing and intona-
tion. Since we always recorded read speech in a quiet envi-
ronment, it is expected to be free of overarticulation or strong
prosodic variation.

Whispered speech is produced when the vocal cords do not
vibrate, but are adducted to produce a narrow constriction at the
glottis. This results in an excitation of the vocal tract where
the normal fundamental frequency is replaced with a “hissing”
sound. Note that whispered speech is, of course, also audible,
yet in the EMG-UKA corpus we consider audible and whis-
pered speech as clearly distinct speaking modes.

Silent speech means that the speaker performs normal ar-
ticulatory movements while suppressing the glottal airstream.

The subjects were instructed to produce audible and whis-
pered speech as they felt most natural. Similarly, we asked the
subjects to articulate silent speech “as normally as possible”,
just with suppressed glottal airflow. In order to avoid unnatural
speech, more specific instructions were not given. We observed
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Full EMG-UKA Corpus
Speaker Number of Sessions

Total | Large | Multi-Mode
1 3 0 3
2 33 1 15
3 1 0 1
4 2 0 2
5 1 0 1
6 1 0 1
7 2 0 2
8 20 1 7
Total 63 2 32

EMG-UKA Trial Corpus
Number of Sessions

Speaker Total | Large | Multi-Mode
2 3 1 2
3 1 0 1
6 1 0 1
8 8 0 2
Total 13 1 6

Table 1: Breakdown of sessions in the full EMG-UKA corpus
and the trial subset. Each session contains at least 50 utter-
ances recorded in audible speaking mode. In multi-mode ses-
sions, these 50 utterances were recorded three times in all three
speaking modes, the two large sessions contain more than 500
utterances of audible speech.

that some phones tended to be slightly audible even in the silent
speaking mode (for example, plosives). We did not correct such
articulation as long as the content of the silently spoken utter-
ance was not understandable; so silent and whispered speech
are clearly distinguished. Our speakers did not speak English
natively, however during the recordings we made sure that En-
glish words were pronounced correctly.

Note that only a subset of the recorded sessions contain data
from all three speaking modes. Whenever multiple speaking
modes are present in a session, the recorded utterances use the
same text corpus across those speaking modes: We refer to this
by the term “parallel utterances”. This scheme facilitates the
comparison of speaking modes.

2.2. Recorded speakers and sessions

The EMG-UKA corpus comprises data from eight speakers, all
of whom were recruited from the Karlsruhe student population
[11]. The speakers were between 24 and 30 years old, seven of
them were male, one female. The number of sessions recorded
by each of the speakers varies between 1 and 33; in particular,
two of the speakers recorded a large number of sessions, as well
as one large session with more than 500 utterances each'. Out
of these eight speakers, four are comprised in the trial subset
as well, with a reduced number of sessions. All subjects were
informed about the nature of the project and agreed by signing
a consent form that their data can be used for further research
and distribution. To protect privacy, all data is anonymized, i.e.
proper names are replaced by neutral IDs and no information
will be made available that links the recordings to individuals.
Table 1 contains a complete list of sessions in the EMG-

'Having a large number of sessions by one and the same speaker is a
requirement for doing experiments on session independent systems (see
section 5).
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Full EMG-UKA Corpus
Subset #Spk | #Ses | Avg Total
Audible (Small) 8 61 3:08 | 3:11:34
Whispered (Small) 8 32 3:22 1:47:42
Silent (Small) 8 32 3:19 | 1:46:20
Audible (Large) 2 2 27:02 54:04
Total amount of data: 7:32h
EMG-UKA Trial Corpus
Subset #Spk | #Ses | Avg Total
Audible (Small) 4 12 3:19 39:47
Whispered (Small) 4 6 3:38 21:47
Silent (Small) 4 6 3:44 22:21
Audible (Large) 1 1 28:29 28:29
Total amount of data: 1:52h

Table 2: Data amount in the EMG-UKA corpus ([h: Jmm:ss).
Each small session contains 50 utterances per speaking mode,
the two large sessions comprise 510 resp. 520 utterances.

UKA corpus. All sessions comprise at least a set of 50 utter-
ances in audible speaking mode (small sessions). The multi-
mode sessions contain three repetitions of the same 50 sentences
in all three speaking modes (parallel utterances), the large ses-
sions consist of 510 resp. 520 utterances of audible speech. The
total amount of data in these setups is given in table 2.

3. Recording setup

EMG data was recorded with a six-channel electrode setup
[10]. We used standard gelled Ag/AgCl surface electrodes with
a circular recording area having a diameter of 4 mm. Figure
1 shows the positioning of the electrodes, capturing the EMG
signal of six articulatory muscles: the levator anguli oris (chan-
nels 2, 3), the zygomaticus major (channels 2, 3), the platysma
(channels 4, 5), the depressor anguli oris (channel 5), the ante-
rior belly of the digastric (channel 1) and the tongue (channels
1, 6) [9] (also compare [12] for further details).

EMG channels 2 and 6 were derived bipolarly, the other
channels used unipolar derivation, with a reference electrode on
the nose (channel 1) respectively two connected reference elec-
trodes behind the ears (channels 3, 4, 5). An additional ground
electrode was placed on the subject’s wrist. Note that in our
experiments, including the ones reported in section 5, we fol-
low [13] in removing channel 5, which tends to yield unstable
and artifact-prone signals. The EMG-UKA corpus distribution
does, however, contain all six EMG channels.

The recordings were performed with the portable Varioport
biosignal recorder (Becker Meditec, Germany). Technical spec-
ifications include an amplification factor of 1170, 16 bits A/D
conversion, a resolution of 0.033 microvolts per bit, and a fre-
quency range of 0.9-295 Hz. EMG signals were sampled with
a 600 Hz sampling rate. Recordings were performed in a push-
to-talk setting and were controlled with the inhouse UKA EEG-
EMG Studio software [14], they were performed in quiet rooms,
but without electrical shielding: We expect this to be closer to
real-life usage than using a specialized recording room.

Acoustic data was recorded with a standard close-talking
microphone connected to a stereo USB soundcard, with a 16
kHz sampling rate. The acoustic data was recorded in stereo
format, the first channel contains the acoustic signal, and the
second channel contains a marker signal for synchronization.

Synchronization of EMG and acoustic data was performed



Figure 1: Electrode positioning for the EMG-UKA corpus (mus-
cle chart adapted from [15])

with a hardware marker signal which is saved as the seventh
channel with the EMG data and as the second (stereo) channel
with the acoustic data, respectively. The marker signal appears
as a binary signal in the EMG data, and as an analog signal in
the audio data, see figure 2. The first peak of the marker is to
be used for synchronization. For easier usage, we precomputed
the location of the synchronization signals in terms of samples,
this data is included in the corpus distribution (see section 4).

4. Data formats and supplementary files

Audio and EMG data are saved in raw, uncompressed format.
Additionally, the corpus distribution comprises diverse supple-
mentary data which may be used as the basis for future experi-
ments:

o Offset files with precomputed synchronization points, as
described above.

e Standard subsets for training and testing, as used in our
experiments (see section 5). The 50-sentence sessions
are subdivided into a training data set of 40 utterances
and a test set of 10 utterances, where the textual content
of training and test data is always different, and the test
set is identical across sessions. The large sessions com-
prise 13 resp. 20 test utterances.

e Transcriptions of all recorded utterances.

e Phone-level alignments of all data. These alignments
were computed from the synchronous acoustic data in
the case of audible and whispered speech [13], and from
the EMG data in the case of silent speech, according to
the cross-modal labeling approach from [5]. All align-
ments are provided on an “AS IS” basis. Due to their
different creation methods, it is assumed that the align-
ments of the silent EMG data are less accurate than the
ones on audible and whispered recordings.

e A pronunciation dictionary of the corpus, and a list of
used phones.

5. Reference recognition results

This section summarizes baseline recognition results for the
corpus. We first give a very brief description of our recognition
system, more details can be found in the referenced literature.
We then report results on session dependent speech recogni-
tion on audible, whispered, and silent speech EMG data, and
on session independent speech recognition on audible speech
EMG data. A session dependent system is characterized by us-
ing training and test data from a single recording session; ses-
sion independent systems [4] are trained on data from several
recording sessions and tested on the test data of an unseen ses-
sion.
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Figure 2: Example audio signal (above) and EMG signal (be-
low) for speaker 2, session 1, utterance 0100, with marker sig-
nal (second audio/7th EMG channel). Note the differing sam-
pling rates: Acoustic data was sampled with 16kHz, EMG data
was sampled with 600Hz.

5.1. EMG features

Our standard EMG features are time-domain features [13]: For
a time series x, X is its frame-based time-domain mean, Py is
its frame-based power, and zx is its frame-based zero-crossing
rate. For a frame-based feature f, S(f,n) is the stacking of
2n + 1 (—n to n) adjacent frames.

For an EMG signal with normalized mean x[n], the nine-
point double-averaged signal w[n] is defined as

4 4

wln] :% Z vin+ k], where v[n] :% Z x[n+ k.

k=—4 k=—4

The high-frequency signal is p[n] = z[n] — w[n], and the rec-
tified high-frequency signal is 7[n] = |p[n]|. The final time-
domain feature TD10 is defined as follows:

TDI10 = S(TDO, n)

where TDO = [W, Pw, Py, zp, T].

The TD10 feature is computed for each channel, and all
channel-wise feature vectors are combined. Frame size and
frame shift are set to 27ms respective 10ms, note that when
time alignments are to be taken from the acoustic data, the
frame shifts applied to the acoustic data and the EMG data must
match. In particular, the alignments which are comprised in
the EMG-UKA Trial corpus distribution are based on a 10ms
frameshift. For the transfer of the alignments from acoustic
data to EMG data, we used the hardware synchronization signal
contained in the recordings (see section 3), and we delayed the
EMG signal by 50ms according to [13].

We always apply Linear Discriminant Analysis (LDA) on
the TD10 feature. The LDA matrix is computed by dividing
the training data into 136 classes corresponding to the begin,
middle, and end parts of the 45 English phones, plus one si-
lence phone. From the 135 dimensions after LDA, we retain 12
dimensions for the session dependent systems, and 32 dimen-
sions for the session independent systems.

5.2. Recognizer setup

Our EMG-based speech recognizer performs continuous speech
recognition based on tristate Hidden Markov Models (HMM).



WER on Audible EMG
22.82%
12.00%

Session Type
Small
Large

Table 3: Average session dependent Word Error Rates (WER)
on audible speech EMG data, for small and large sessions.

Each word is composed from its phones, which are taken from
the pronunciation dictionary, each phone has three substates
(begin, middle, end).

The emission probabilities for the HMM are based on
multi-stream Bundled Phonetic Features (BDPF) [2]. A Pho-
netic Feature (PF) stream is a knowledge source corresponding
to a phonetic (or articulatory) feature [16], which is a binary-
valued property of a phone, like the place or manner of artic-
ulation: For example, each of the places of articulation Gloz-
tal, Palatal, ..., Bilabial is a phonetic feature which may or
may not be present. The key feature of our BDPF approach,
detailed in [2], is the modeling of dependencies between PFs
using a decision-tree approach, hence, we obtain Bundled Pho-
netic Features. Several BDPF knowledge sources are combined
to yield the final emission log probability, this structure is called
a multi-stream model [17].

The experiments reported in this section are based on eight
BDPF streams, chosen to correspond to the most frequent pho-
netic features in the corpus. Each BDPF stream uses a deci-
sion tree with a fixed number of 120 leaves. Phonetic context
questions about the left and right neighboring phones (i.e. up to
a context width of 1) are allowed. All BDPF streams receive
equal weights of 1/8, no phone stream is used.

5.3. Training and decoding

For bootstrapping the recognizer (including the LDA compu-
tation), we use the phone-level time alignments from the cor-
pus (see section 4). Training comprises intializing context-
independent, unbundled phone and phonetic feature models,
performing phonetic feature bundling, and retraining with the
newly created models, according to the recipe in [2, section 3.3].

Decoding uses the trained myoelectric model together with
a trigram BN language model. The test set perplexity is 24.24.
Lattice rescoring is not applied. The recognition vocabulary
is restricted to the 108 words appearing in the test set; this is
our standard procedure for the small session dependent systems,
where only a few minutes of training data is available. Larger
(session dependent and session independent) systems also en-
able larger vocabularies, see [4].

All systems use a fixed training/test data subdivision (see
section 4). The amount of training data is 40 utterances for all
sessions except for the two “large” ones by speakers 2 and 8,
where around 500 utterances are used.

5.4. Session-dependent recognition of audible speech

Table 3 shows average (test set) Word Error Rates of the 63
session dependent recognizers on audible EMG data. It can be
seen that the large sessions, where more training data is avail-
able, perform substantially better than the 40-sentence sessions.

5.5. Session-dependent recognition of audible, whispered,
and silent speech

Table 4 lists the Word Error Rates of our recognizer on the dif-
ferent speaking modes, for session dependent recognition. All
systems are mode dependent: Training and testing was always
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WER by Speaking Mode
Speaker Audible %Vhli)speredg Silent
1 43.43% | 38.37% 92.23%
2 22.23% | 23.24% 32.80%
3 64.60% | 61.60% 99.00%
4 27.75% | 30.30% 61.10%
5 37.40% | 30.30% 80.80%
6 11.10% | 16.20% 61.60%
7 37.85% | 52.00% 76.25%
8 21.81% | 23.67% 37.23%
Total 26.90% | 28.19% 48.29%

Table 4: Session-dependent Word Error Rates (WER) for all
three speaking modes, averaged over sessions per speaker. For
the numbers on audible EMG, only the sessions which also con-
tain the other speaking modes are considered. Also note that the
total WERs are computed on a per-session basis, not on a per-
speaker basis.

performed on data from only one speaking mode. Therefore,
each system was trained on 40 training utterances. It is ob-
served that silent speech is recognized with higher error rate
than whispered or audible speech, which is in particular due to
a few speakers who were observed to find silent articulation es-
pecially difficult.

5.6. Session-independent recognition

Block Session-independent WER
Speaker 2, Block 1 15.61%
Speaker 2, Block 2 | 49.30%
Speaker 8 16.16%
Average 27.02%

Table 5: Average Word Error Rates (WER) in the session inde-
pendent setup. See text for details.

For the session independent system, only audible EMG data
from the small sessions was used for training and testing. The
sessions were subdivided as follows: We defined three blocks
of 16 consecutive sessions, namely two blocks for speaker 2
(sessions 1 ...16 and 17 ...32), and one block for speaker 8,
taking the first 16 sessions. For each block we trained 16 sys-
tems, where one session was designated as farget session, and
training was performed on the training data of the remaining
sessions. Thus we get 16 different setups per block.

The average Word Error Rates on the test sets of the target
sessions are given in table 5. We observe that for two out of
three blocks, the WER is excellent even in the session indepen-
dent setup, where no training data from the test session is used
at all. We showed that this system can be further improved by
both supervised or unsupervised session adaptation [4, 18, 19].

6. Conclusion

During the past decade, Silent Speech interfaces have become
a major topic of research. The electromyographic approach is
of particular interest, since it is highly developed, particularly
regarding continuous speech recognition. In this paper we pre-
sented the EMG-UKA corpus, which has been used as the basis
for a large number of investigations conducted by our group. A
trial subset of 1:52 hours is freely available for download, serv-
ing as a starting point for other Silent Speech researchers, and
as a benchmark database.
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