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Abstract. We present our recent advances in silent speech interfaces using elec-
tromyographic signals that capture the movements of the human articulatory
muscles at the skin surface for recognizing continuously spoken speech. Previ-
ous systems were limited to speaker- and session-dependent recognition tasks
on small amounts of training and test data. In this article we present speaker-
independent and speaker-adaptive training methods which allow us to use a large
corpus of data from many speakers to train acoustic models more reliably. We use
the speaker-dependent system as baseline, carefully tuning the data preprocess-
ing and acoustic modeling. Then on our corpus we compare the performance of
speaker-dependent and speaker-independent acoustic models and carry out model
adaptation experiments.

1 INTRODUCTION

Automatic Speech Recognition (ASR) has now matured to a point where it is success-
fully deployed in a wide variety of every-day life applications, including telephone-
based services and speech-driven applications on all sorts of mobile personal digital
devices.

Despite this success, speech-driven technologies still face two major challenges:
first, recognition performance degrades significantly in the presence of noise. Second,
confidential and private communication in public places is difficult due to the clearly
audible speech.

In the past years, several alternative techniques were proposed to tackle these ob-
stacles, among them the recognition of whispered speech with a throat microphone [1]
or non-audible murmur with a special stethoscopic microphone [2]. Other approaches
include using optical or ultrasound images of the articulatory apparatus, i.e. [3], or sub-
vocal speech recognition [4].

In this article, we present our most recent investigations in electromyographic (EMG)
speech recognition, where the activation potentials of the articulatory muscles are di-
rectly recorded from the subject’s face via surface electrodes’.

In contrast to many other technologies, the major advantage of EMG is that it allows
to recognize non-audible, i.e. silent speech. This makes it an interesting technology not

! Strictly spoken, the technology is called surface electromyography, however we use the abbre-
viation EMG for simplicity.



only for mobile communication in public environments, where speech communication
may be both a confidentiality hazard and an annoying disturbance, but also for people
with speech pathologies.

Research in the area of EMG-based speech recognition has only a short history. In
2002, [5] showed that myoelectric signals can be used to discriminate a small number
of words. In 2006, [6] showed that speaker dependent recognition of continuous speech
via EMG is possible. The recognition accuracy in this task could be improved by a
careful design of acoustic features and signal preprocessing [7], and advances in acous-
tic modeling using phonetic features in combination with phone models [8]. However,
the described experiments were based on relatively small amounts of data, and conse-
quently were limited to speaker-dependent modeling schemes. In [9], first results on
EMG recognition across recording sessions were reported, however these experiments
were run on a small vocabulary of only 10 isolated words.

This article reports EMG-based recognition results on continuously spoken speech
comparing speaker-dependent, speaker-adaptive, and speaker-independent acoustic mod-
els. We use recognition results from the speaker-dependent system as baseline and show
that the accuracy of this system improves by appropiately tuning the data preprocessing
and adapting the acoustic modeling. For the speaker-independent and speaker-adaptive
experiments we first develop generic speaker independent acoustic models based on a
large amount of training data from many speakers and then adapt these models based
on a small amount of speaker specific data. The baseline performance of the speaker-
dependent EMG recognizer is 52.08% Word Error Rate on a testing vocabulary of 108
words.

The article is organized as follows: In section 2, we describe the data acquisition
and the resulting data corpus EMG-PIT. In section 3, we explain the setup of the EMG
recognizer, the feature extraction methods, as well as the different training and adapta-
tion variants. In section 4, we present the recognition results of the different methods
and section 5 concludes the article.

2 THE EMG-PIT DATA CORPUS

During the years 2007 - 2008 we collected a large database of EMG signals from 78
native speakers of American English. This collection was done in a joint effort with
colleagues from the Department of Communication Science and Disorders at University
of Pittsburgh [10]. The resulting data corpus bears the name EMG-PIT; to the best of
our knowledge it is the largest corpus of EMG recordings of speech so far.

The collection was done in two phases, a pilot study with 14 speakers, and the fi-
nal collection of 64 speakers. The 14 pilot study subjects participated in two recording
sessions, the other speakers participated in one recording session. All participants were
female adults between 18 and 35 years of age with normal vocal qualities. The sub-
jects were recruited primarily from the student population of Pittsburgh (University of
Pittsburgh and Carnegie Mellon University).

To further study the similarities and differences of audible and silent speaking mode
[9], the database covers both speaking modes with parallel utterances, i.e. each speaker
read the same sentences in both silent and audible speaking mode. The audible utter-



Fig. 1. Electrode Positioning

ances were simultaneously recorded with a conventional air-transmission microphone.
For EMG recording we used a computer-controlled 8-channel EMG recorder (Vario-
port, Becker-Meditec, Germany), together with a self-developed recording tool. Tech-
nical specifications of the Varioport system include an amplification factor of 1170, 16
bits A/D conversion, a step size (resolution) of 0.033 microvolts per bit, and a frequency
range of 0.9-295 Hz. All EMG signals were sampled at 600 Hz. To allow for backward
compatibility with our former experiments in [9], we adopted the electrode positioning
which yielded optimal results (see figure 1). This electrode setting uses five channels
and captures signals from the levator angulis oris, the zygomaticus major, the platysma,
the anterior belly of the digastric and the fongue. To also be able to experiment with
new electrode positions, we applied one unused channel to collect new electrode po-
sitions. The acoustic data was recorded at 16kHz, 16bit resolution and stored in PCM
encoding. All subjects were recorded with a close-up video Camcorder while producing
audible and silent speech.

To get good phone coverage and to avoid transcription work, the subjects read pho-
netically balanced English sentences in a controlled setting rather than to record con-
versational, unplanned speech. These sentences were taken from the Broadcast News
domain. To cover large amounts of context but at the same time allow for mode and vari-
ability comparisons, the speaker read one batch of 10 BASE utterances, which are the
same for each speaker, and one batch of 40 speaker specific SPEC utterances, only read
by one speaker. The vocabulary of the BASE sentences consists of 108 words. Each
recording session consisted of two parts, one part audible and one part silent speech.
In each part we recorded one BASE set and one SPEC set. The total of 50 BASE and
SPEC utterances in each part were recorded in random order. For the pilot study, sub-
jects recorded two sessions, where the order of the audible and silent parts was reversed
after the first session to control effects from utterance repetitions between the parts. In
the main study, each subject recorded first the audible part and then the silent part. The
following table shows the statistics from the EMG-PIT corpus.



Phase|Speakers|Sessions Utterances |Duration [min]

Audible|Silent|Audible| Silent
Pilot 14 28 1400 | 1400| 108 110
Main 64 64 3200 |3200| 287 251
]Total\ 78 \ 92 \ 4600 \4600\ 395 \ 361 ‘

This article reports results on the audible utterances of the pilot study only, leaving
the remaining data as verification set for future studies. Thus the corpus of utterances
which was used for this study has the following properties:

Speakers 14 females speakers
Sessions 2 sessions per speaker
Average Length
(total) 231 seconds per session
(training set) 180 seconds
(test set) 51 seconds
Decoding vocabulary|83 words (108 words

including pronunciation
variants)

3 EMG-BASED SPEECH RECOGNIZER

The initial EMG recognizer was taken from [7], which in turn was set up according
to [6]. It used an HMM-based acoustic modeling, which was based on fully continu-
ous Gaussian Mixture Models. For the initial context-independent phoneme recognizer
there were 136 codebooks (three per phoneme, modeling the beginning, middle and
end of a phoneme, and one silence codebook). It should be noted that due to the small
amount of training data, most speaker dependent codebooks ended up with about one
to four Gaussians after the initial automatic merge-and-split codebook generation.

The training concept worked as follows: The time-aligned training data (see sec-
tion 3.1) was used either for a full training run (see section 3.3), or we applied MLLR
adaptation on models which were pre-trained on a large set of speakers to adapt them
to the current speaker and session (see section 3.4). The latter is especially important in
practical applications since it allows setting up a recognizer with a very small amount of
individual training data: in section 4.2 we describe how the recognition results change
when the size of the set of speaker-specific training data is reduced.

During the decoding, we used the trained acoustic model together with a trigram
language model trained on Broadcast News data. The testing process consisted of an
initial testing run followed by a lattice rescoring in order to obtain optimal results. See
section 3.6 for details.

In section 3.5 we present our investigations on using bundled phonetic feature mod-
els for the EMG recognizer.

3.1 Initial Time Alignment

In order to find a time alignment for the training sentences, the audio data which had
been simultaneously recorded was used. The audio data was forced-aligned with an



English Broadcast News (BN) speech recognizer trained with the Janus Recognition
Toolkit (JRTk). This recognizer is HMM-based, and makes use of quintphones with
6000 distributions sharing 2000 codebooks. The baseline performance of this system is
10.2% WER on the official BN test set (Hub4e98 set 1), FO condition [11].

The resulting time-alignment can not be mapped directly to the EMG data since
the EMG signal precedes the audio signal by about 30ms - 60ms [8]. Accordingly, we
modeled this effect by delaying the EMG signal for an amount of 0 ms to 90 ms (in
steps of 10 ms). Additionally, in this article we demonstrate that considering a large
frame context during acoustic modeling makes the acoustic models more robust with
respect to the time delay and yields better recognition results. The effect of the EMG
signal delay and of considering a large frame context is charted in section 4.1.

3.2 Feature Extraction

We compare two methods for feature extraction, which are both based on time-domain
(TD) features. Their only difference is the amount of context which is considered for
the final features.

We use the following definitions [6]: For any feature f, f is its frame-based time-
domain (amplitude) mean, Py is its frame-based power, and zy is its frame-based zero-
crossing rate. S(f,n) is the stacking of adjacent frames of feature f in the size of 2n+ 1
(—n to n) frames.

For an EMG signal with normalized mean x[n], the nine-point double-averaged
signal wlk] is defined as

4 4

1 1

win] = §n=Z_4v[n], where v[n] = 5 _Z’ x[n].

The rectified high-frequency signal is r[n] = |x[n] — w[n]|. In [6], the best WER was
obtained with the following feature:

TD5 = S(f2,5), where f2 = [w, Py, Py, 7, T].

We use this feature as baseline in this article and call it TDS5, where the number 5 stands
for the stacking width. We found that we got optimal results by increasing the context
width to 15 frames, yielding a total of 31 frames to be stacked. The resulting feature is
called TD15 and is defined as

TD15 = S(£2, 15), where f2 = [W, Py, Py, 2, F].

In section 4.1, we compare the features TD5 and TD15.

In these computations, we used a frame size of 27 ms and a frame shift of 10 ms
since we found earlier that these values give optimal results [12]. In both cases, the fea-
tures from the five EMG channels are stacked to create a final “joint” feature consisting
of the synchronized data from all channels, On the resulting joint feature vector, Linear
Discriminant Analysis (LDA) is applied to reduce the dimensionality of the final feature
vectors to 32 according to [6].

We compare the performance of features TD5 and TD15 in section 4.1 and demon-
strate that TD15 performs better than the original TDS feature. Therefore in the later
sections we only use the TD15 feature.



3.3 Training Process

A full training run consisted of the following steps: First, an LDA transformation ma-
trix for feature dimensionality reduction was calculated based on the time-aligned data.
Initial codebooks were created by a merge-and-split algorithm in order to adapt to the
small amount of training data and to compensate for differences in the available num-
ber of samples per phoneme. After this, four iterations of Viterbi EM training were
performed to improve the initial models.

3.4 Across-Speaker Experiments and Adaptation

Speaker independent acoustic models were obtained by initially training acoustic mod-
els based on the training data of all speakers but the two sessions of the test speaker.
On the trained models, we tested with the test set of the respective test speaker (“cross-
speaker training”). In the adaptation experiments, we performed MLLR-based speaker
adaptation of the models prior to the test (“speaker-adaptive training”). The results of
these experiments are charted in section 4.2.

3.5 Bundling of Phonetic Features

In the first batch of experiments, we consider (speaker-dependent and speaker-independent)
phoneme models of the EMG signal, i.e. we regard each frame of the EMG signal as the
representation of the beginning, middle, or end state of a phoneme. However, it has been
shown in acoustic speech recognition that the recognizer may benefit from additionally
modeling phonetic features (PFs), which represent properties of a given phoneme, such

as the place of articulation or the manner of articulation [13].

Note that in some previous works, i.e. [13, 14] these models are titled “Articulatory
Features”. Since this modeling approach does not reflect the movements of the articula-
tors, but rather represents phonetic properties of phonemes, we use the term ‘“Phonetic
Features” (PFs) in our work.

We derive the PFs from phonemes as described in [15], i.e. we use the IPA phono-
logical features for PF derivation. In this work, we use PFs that have binary values. For
example, each of the articulation places Glottal, Palatal and Labiodental is a PF that
has a value either present or absent. These PFs do intentionally not form an orthogonal
set because we want the PFs to benefit from redundant information. In the experiments
reported in this article, we use nine different PFs, namely the set { Consonant, Vowel,
Alveolar, Voiced, Fricative, Affricate, Glottal, Labiodental, Palatal }, since on the rela-
tively small vocabulary of the speaker-dependent systems these PFs are found to receive
sufficient training data to allow for good classification (compare [16], figure 2).

The architecture we employ for the PF-based EMG decoding system is a multi-
stream architecture [15, 17], see figure 2. This essentially means that the models draw
their acoustic probabilities not from one single source (or stream) but from a weighted
sum of various sources. These additional sources correspond to acoustic models rep-
resenting substates of PFs, like “middle of a vowel” or “end of a non-fricative”. The
conventional EMG phoneme-based recognizer contributes as well.



Pronunciation Dictionary Lookup

| «HELLO WORLD» | ¢ JVL
Phonemes | h | e | | | ou | w | er | | | d
@ Phonetic Features @
Alveolar X X X
Glottal X
Plosive X
Fricative X
Vowel X X X
Front (Vowel) X
Phoneme 1 .. Phonemen Phonetic Feature 1 Phonetic Feature k
present absent present
Phoneme Stream Score PF, Stream Score PF, Stream Score
Weightponeme Weightye; g Weightpg,

Acoustic Model

Model score

Fig. 2. The Multi-Stream Phonetic Features Decoding Architecture. The upper part shows how
the PFs are obtained from the phonetic information, the lower part shows the weighting of the
various information sources.

It was suggested by [18] that one major shortcoming of previous PF recognition
systems was that features were modeled as statistically independent. The independence
assumption is not correct since physiologically every phonetic feature describes the in-
terplay of various articulators, i.e. the interdependent activity of several facial muscles.

We described a data-driven algorithm for finding dependencies between phonetic
features in [19]. We call the process of pooling dependent features together “feature
bundling”, since eventually we will end up with a set of PF acoustic models which rep-
resent bundles of PFs, like “voiced fricative” or “rounded front vowel”. We additionally
allow these bundled phonetic features (BDPFs) to depend not only on properties of the
current phoneme, but also on the right and left context phonemes. In [19] we reported
that an EMG recognizer based on bundled phonetic features outperforms a recognizer
based on context-independent phonemes only by more than 30%.



The algorithm which performs this pooling is a standard decision-tree based cluster-
ing approach [20], as it is successfully used in large vocabulary acoustic speech recog-
nition to determine phoneme context clusters. This clustering works by creating a con-
text decision tree, which classifies phonemes by asking linguistic questions about the
current phoneme and its left and right context. The set of all possible questions is pre-
defined, examples of these categorical questions are: Is the current phone voiced? or Is
the right-context phone a fricative?.

The context tree is created separately for each PF stream, from top to bottom. This
means that the initial set of acoustic models e.g. for the stream “FRICATIVE” consists
of six models: namely the beginning, middle and end of a “FRICATIVE” or “NON-
FRICATIVE”. Each context question splits one acoustic model into two new models.
The splitting criterion is maximizing the loss of entropy caused by the respective split.
Note that both the models representing the presence and absence of a phonetic feature
take part in the splitting process. The process ends when a pre-determined termination
condition is met. This condition must be chosen based on the properties of the available
data to create a good balance between the accuracy and the trainability of the context-
dependent models.

Our termination criterion is that a fixed number of 70 tree leaves for each phonetic
feature, corresponding to 70 independent acoustic models, is generated for each PF
stream, since this number was experimentally found to yield optimal results. Then the
general training process is as follows:

— First, an ordinary context-independent EMG recognizer is trained on the given
training data. This recognizer uses both phoneme and PF models, but no PF bundling
yet.

— In a second step, the context decision tree is grown as described above, and a set of
bundled phonetic features (BDPFs) is generated.

— Finally, the BDPF EMG recognizer is trained using the acoustic models defined in
the previous step.

With the BDPF recognizer, we perform the same set of cross-speaker and adaptation
experiments as with the phoneme-based recognizer, see section 3.4. The results are
charted in section 4.2.

3.6 Testing

For decoding, we use the trained acoustic model together with a trigram BN language
model. We restricted the decoding vocabulary to the words appearing in the test set.
This resulted in a test set of 10 sentences per speaker with a vocabulary of 108 words.
On the test sentences, the trigram-perplexity of the language model is 24.24.

The testing process used lattice rescoring in order to determine the optimal weight-
ing of the language model compared to the acoustic model.



4 EXPERIMENTAL RESULTS

4.1 Preprocessing for the Speaker-Dependent System

Figure 3 compares the word error rates (WER) of the speaker-dependent recognition
systems of the feature preprocessings TD5 and TD15 and phoneme-based and BDPF
modeling. The results were obtained on speaker-dependent systems, i.e. by training on
the training data of one session and tested on test data from the same session. Note that
we give the averages over all 28 sessions.
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Fig. 3. Average Speaker-dependent Word Error Rate for Different Time Delays

The average WER of the baseline recognizer, equipped with the TD5 feature, is
54.89%, where the WER ranges from 51.92% to 60.90%, with a noticeable minimum
between 30 ms and 60 ms. Using the TD15 feature, we get an average WER of 48.34%,
where for EMG signal delays between 0 ms and 90 ms, the WER ranges from 47.15%
to 49.85%. Thus one can see that the wider context yields not only a performance im-
provement of about 12% relative, but also a much higher robustness when the delay
between audio and EMG signal is varied. This can be important in settings where the
exact synchronization between EMG and audio signal may not be exactly determined
during the training run.

Similarly, the average word error rate of the BDPF recognizer with the TDS5 feature
is 36.67%, which by using the TD15 feature is reduced by about 11.5% relative to
30.95%. Again, one can see that the graph becomes “flatter” by using a higher context
width, i.e. the performance becomes less dependent on the EMG signal delay.

Experiments showed that increasing the context width consistently increases the
recognition performance until a critical width of about 15 frames to each side, which



corresponds to a total context window of about 300 ms. Beyond that value no more sig-
nificant improvement occurs. One can conclude from this that speech-relevant observ-
able patterns in the EMG signal may have a length of up to 300 ms and that a purely
frame-based preprocessing, which only considers a window of about 27 ms, does not
fully capture the discriminating properties of the EMG signal. Also note that the opti-
mal delay for the TDS5 preprocessing still lies around 50ms, which is consistent with the
results in [6].

In accordance with the results given above, for all further experiments we used the
following recognizer setup:

— Feature Preprocessing: Time-domain feature TD15
— Modeling: Bundled Phonetic Features (BDPFs)
— EMG signal delay: 50ms.

4.2 Cross-Speaker and Adaptive Experiments
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Fig. 4. Comparison of Word Error Rates for the Phoneme-based Recognizer

In the following experiments we compare three training scenarios:

— Speaker-Dependent Training: As above, the system is trained and tested with data
from one speaker and one session only.



— Cross-Speaker Training: The system is trained on all sessions from all speakers
except the two sessions from the test speaker. The system is tested on the test data
of one session.

— Speaker-Adaptive Training: We use the trained models from the cross-speaker train-
ing step, but the resulting system is then adapted toward the test speaker using
MLLR adaptation [21] on the training data from one session. As above, testing is
done on the test data from the same session.

Figure 4 shows a breakdown of the results of these experiments for each speaker
and indicates that the speaker-dependent and adaptive systems clearly outperform the
cross-speaker system. This is not very surprising as the speaker independent models
have to capture speaker variabilities but at the same time suffer from slight variations in
the electrode positioning across speakers. Furthermore, we see that speaker dependent
model training achieves better results than MLLR adaptation for most of the speakers
and sessions. However for sessions where speaker-dependent training performs badly,
particularly for speakers 2 and 9 and to some extent 4 and 10, the performance of the
adapted system does not degrade similarly and may outperform the speaker-dependent
system.
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Fig. 5. Comparison of Word Error Rates for the BDPF-based Recognizer

We repeated the above experiment, comparing the training scenarios Speaker-Dependent
Training, Cross-Speaker Training and Speaker-Adaptive Training, now using bundled



phonetic features (BDPFs) as acoustic models. The results are charted in figure 5 and in-
dicate that BDPF modeling brings a clear performance improvement in all the training
scenarios. Beyond this, the same pattern as for the phoneme-based recognizer holds:
Speaker-dependent recognition generally still achieves better results than both cross-
speaker and speaker-adaptive recognition, however for most speakers, with the notable
exception of speaker 5, the adaptive system has a performance close to the one of the
speaker-dependent system and even outperforms it for 10 out of the 28 sessions.

As a final experiment, we investigated whether MLLR adaptation is applicable for
very small sets of speaker-specific training data. For this purpose we took subsets of
10, 20 and 30 sentences out of the full training sets of 40 sentences for each speaker
and used each of these reduced sets to train a speaker-dependent system and to create a
speaker-adaptive system by performing MLLR adaptation on the original cross-speaker
system, trained on the full set of training data from all speakers except the one to be
tested. Note that the test set remained unchanged in these experiments.

Figure 6 displays the average word error rate of these recognizers and clearly shows
that while for the full set of training sentences the average WER is better for the speaker-
dependent systems, the situation is very different for smaller sets of training data: With
10 adaptation sentences, the best speaker-adaptive system yields an average WER of
52.26% (with no adaptation at all, i.e. for the corresponding cross-speaker system,
the average WER is 70.27%), while a speaker-dependent system yields a high aver-
age WER of 85.49%. When the training set grows, all systems quickly improve, but
for up to 30 training sentences, the speaker-adaptive systems on average have a better
performance than the speaker-dependent systems.

4.3 Summary

The following table summarizes the average Word Error Rates of the different recog-
nizers we presented in the above sections. Note that all values are based on the TD15
preprocessing, and that we always give results for the full set of 40 speaker-specific
training/adaptation sentences.

System Pi‘?;gﬂ?g?ggg; Rel. Gain by BDPF
Speaker-Dependent| 47.15% 31.68% 32.8%
Cross-Speaker 79.50% 70.27% 11.6%
Speaker-Adaptive | 56.34% 37.92% 32.7%

The results are also charted in figure 7 and clearly show that MLLR model adap-
tation is applicable to the task of EMG speech recognition. Furthermore it can be seen
that BDPF modeling yields a clear improvement in all training scenarios. In the speaker-
dependent and speaker-adaptive cases, the improvements are both about 33%, whereas
in the cross-speaker case, the gain is at about 11.5%. In particular, BDPF modeling im-
proves the performance of the adaptation step, making this modeling approach a very
interesting perspective for further investigations in speaker-adaptive EMG signal pro-
cessing.
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S CONCLUSIONS

We have compared speaker-dependent, speaker-independent and speaker-adaptive sys-
tems for EMG speech recognition, reporting results on the performance of EMG speech
recognition across multiple speakers and sessions of the EMG-PIT data corpus. We
found that while for the full training sets of the EMG-PIT corpus the speaker- and
session-dependent EMG system still performs best, for small speaker-specific training
sets of up to approximately 30 utterances, on average a speaker-adaptive system outper-
forms a speaker- and session-dependent EMG recognizer; the speaker-adaptive system
still yields acceptable recognition results with a set of only 10 adaptation sentences.
This shows that the MLLR adaptation method is feasible for EMG speech recognition
and that adaptation methods may be a lever for increasing the usability of EMG-based
speech recognition.

We also showed that phonetic feature bundling consistently outperforms phoneme-
based systems and in particular significantly increases the performance of MLLR adap-
tation.
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