INTERSPEECH 2014

Conversion from Facial Myoelectric Signals to Speech:
A Unit Selection Approach

Marlene Zahner, Matthias Janke, Michael Wand, Tanja Schultz

Cognitive Systems Lab, Karlsruhe Institute of Technology, Germany
matthias. janke@kit.edu

Abstract

This paper reports on our recent research on surface elec-
tromyographic (EMG) speech synthesis: a direct conversion of
the EMG signals of the articulatory muscle movements to the
acoustic speech signal. In this work we introduce a unit selec-
tion approach which compares segments of the input EMG sig-
nal to a database of simultaneously recorded EMG/audio unit
pairs and selects the best matching audio unit based on target
and concatenation cost, which will be concatenated to synthe-
size an acoustic speech output. We show that this approach is
feasible to generate a proper speech output from the input EMG
signal. We evaluate different properties of the units and investi-
gate what amount of data is necessary for an initial transforma-
tion. Prior work on EMG-to-speech conversion used a frame-
based approach from the voice conversion domain, which strug-
gles with the generation of a natural £ contour. This problem
may also be tackled by our unit selection approach.

Index Terms: electromyography, silent speech interface, unit
selection

1. Introduction

In the recent years novel speech processing approaches called
Silent Speech Interfaces [1] became more and more popular.
These systems enable speech communication or speech recog-
nition even when the acoustic signal is not available, tackling
mainly three application areas:

1. good performance in the presence of noise,
2. no disturbance of bystanders and preservation of privacy,

3. assistive devices for speech-disabled persons (e.g., laryn-
gectomees).

Our method of processing silent speech relies on surface elec-
tromyography (EMG) [2], where the electrical action poten-
tials of the articulatory muscles are recorded during speaking
by electrodes on the skin surface. Solely these EMG signals are
then used to trace back the original speech signal. We perform a
direct conversion from EMG to the acoustic domain [3] so that
a receiver, be it a computer or another human, can comprehend
the intended message.

[3] introduced a direct mapping from EMG to speech us-
ing a frame-based voice conversion approach [4] that creates
spectral acoustic features, but still uses the fundamental fre-
quency (Fp) from the simultaneously recorded audible speech
signal. [5] complemented this technique by generating Fp
from the EMG signal, but faced issues with the naturalness
and prosody of the generated output. In this paper we intro-
duce a direct EMG-to-speech mapping based on a unit selec-
tion approach [6]. In the training stage we build a database con-
sisting of corresponding EMG and speech units, collected dur-
ing simultaneous data recordings. In the conversion stage this
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database is used to search for the best matching speech units to
a given input sequence of EMG segments.

‘We expect this new technique to have advantages compared
to a frame-based approach (e.g. Gaussian Mixture Mapping,
[3, 7, 8]). The main benefit is an improved naturalness in the
synthesized speech. This is based on the fact that FO variations
are already contained in the speech units and no complex system
for generating prosody on top of the speech frames is necessary.

The remainder of this paper is organized as follows: Sec. 2
presents the setup and describes the data corpus we used, fol-
lowed by Sec. 3 which gives the details about our unit selec-
tion mapping approach. In Sec. 4, we present our experimental
results, and Sec. 5 concludes the paper and outlines possible
future work.

2. Data corpus information

For our unit selection approach we selected data recordings
from our prior work [8, 9] which contain more than 500 ut-
terances of EMG signals recorded during audible speech. The
corpus consists of four recording sessions of two male speakers.
While it is imaginable to use these sessions to build a speaker
independent system, we only use it session dependently.

Figure 1: left: Single electrode positioning, black numbers indi-
cate unipolar derivation with reference electrodes behind ears
(except channel 1), white numbers indicate bipolar derivation.
right: Electrode array positioning, large array is positioned on
the cheek, small array under the chin. See text for details.

For the recording of the EMG signals, we used two differ-
ent types of setups: a single electrode system and a novel elec-
trode array approach. For the single electrode setup we used
a computer-controlled 6-channel EMG data acquisition system
(Varioport, Becker-Meditec, Germany). We captured signals
from 1) the levator angulis oris, 2) the zygomaticus major, 3) the
platysma, 4) the anterior belly of the digastric and 5) the tongue,
see Fig. 1 (left) for the electrode positioning. All EMG signals
were sampled at 600 Hz and filtered with an analog high-pass
filter. The electrode positioning which yielded optimal results
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was adopted from [10].

The electrode array acquisition device (EMG-USB2, OT
Bioelettronica, Italy) recorded the EMG signals using a large ar-
ray of four rows of eight electrodes with 10mm inter-electrode
distance (IED) and a second smaller array with one row of eight
electrodes with 5mm IED. As illustrated in Fig. 1 (right) the
large array was placed on the subject’s cheek, while the smaller
one was positioned under the chin. The array signals were sam-
pled at 2048 Hz, using a bipolar derivation, where the activation
differences between two adjacent channels in a row are calcu-
lated. We therefore obtain a total of 35 signal channels out of
the 4 x 8 cheek electrodes and the 8 chin electrodes [9].

In addition to the EMG signal, we simultaneously recorded
the audio signal with a standard close-talking microphone at a
sampling rate of 16kHz. The audio signal is synchronized to
the EMG signal with an analog marker. This is a prerequisite
for building our database of corresponding EMG and speech
segments.

The text corpus is based on [11] and consists of phonetically
balanced English sentences which originated from the broadcast
news domain. Each session was split into a train and eval set.
The latter contains at least 10 different test sentences (plus rep-
etitions), which are kept fixed across all sessions. For recording
the data, the speaker read all prompted utterances in normal,
audible speech in randomized order. This was supervised by a
recording assistant to assure proper pronunciation and to guar-
antee a stable signal quality.

Table 1 gives detailed information about the durations of
the recorded utterances.

Table 1: Data corpus information for the recorded utterances,
including speaker/session breakdown.

. Accumulated data | # of train/eval
Session .
length, in (mm:ss) | utterances
Train Eval Train Eval
Spk1-Single | 27:10 01:19 500 20
Spk2-Single | 26:54 00:49 496 13
Spkl-Array 31:01 00:47 500 10
Spk2-Array 25:44 01:10 500 20
Total 110:49 04:05 1996 63

3. Unit selection approach

The target of the proposed unit selection approach is to generate
a natural-sounding waveform that resembles the original utter-
ance. For this purpose we first build a database from simulta-
neously recorded EMG and audio signals. We extract segments
of a fixed frame number, similar to Fig. 2. We refer to this
number of frames as unit width w,,. To create a higher number
of segments in the database, we shift the segments by 1 frame
at a time, rather than shifting by the whole unit. Together, the
EMG segment (source) and the associated speech segment (tar-
get) form one unit. Which features are used to represent speech
and muscle movement is described in Sec. 4.1 and Sec. 4.2, re-
spectively.

During the conversion phase, the EMG test sequence is also
split up into overlapping segments of the same width, as shown
in Fig. 2. We also vary the shift between two consecutive seg-
ments. The effect of this unit shift s, is shown in Sec. 4.5. As
default for our experiments we chose w,, = 11 and s,, = 10.

The desired units are then chosen from the database by
means of two cost functions, the target cost c¢; and the con-
catenation cost c. [6]. The target cost measures the similarity
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Test sequence

Test segments

Figure 2: Splitting of the test sequence, here with unit width
wy = 11 and unit shift s, = 3.

between a test segment and a database unit. It is calculated as

the mean Euclidean distance between the respective source seg-

ments si?st and sgb):
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where Dg denotes the dimensionality of the EMG features and
s® (k, d) denotes the d-th dimension of the k-th frame of the
segment at time index ¢.

The concatenation cost is based on the cepstral distance at
the point of concatenation to ensure a proper smoothness of the
acoustic output. It is calculated as the mean Euclidian distance
between the overlapping frames of the target segments of two

database units tg,} and t((i?l):
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where D 4 denotes the dimensionality of the audio features and
Ou = Wy — Sy is the number of overlapping frames of two
units. If two units have a natural transition, meaning they origi-
nated from the same utterance with starting points ¢ and ¢ + s,
they are favored because the overlapping frames are the same,
resulting in a concatenation cost of 0.

Additionally, a weight for the two cost functions is needed
to balance naturalness and distinctiveness.

The search for the optimal unit sequence is implemented as
a Viterbi search through a fully connected network [12]. The
goal is to minimize the overall cost of the chosen sequence. In
our experiments, the Viterbi search was limited to a maximum
of 100 active paths. This constraint decreased the output quality
only marginally while considerably reducing the computation
time.

After determining the optimal unit sequence, the overlap-
ping audio segments are smoothed using a weight function as
proposed by [13]. We define n as the number of units which
share a frame, illustrated by the hatched frames of the chosen
segments in Fig. 3. Since this number of units n varies depend-
ing on the unit shift, the weight w for each unit’s affected frame
is calculated as follows:

emp(—O;Q - ali])

wli] = ,i=1...n, 3)
W
with
afi] = [%T,Lg—nl,...,l,l,.. ,%—nl,%, § n even
slls1—=1,...,1,...,[5]1 = 1,[5]], nodd,
4

where w = »"_| exp(—0.2 - a[d]) is used for normalizing the
weights to sum to 1. Fig. 3 shows an example of the smooth-
ing process: The hatched frames of the chosen segments are
weighted and added up to create one output frame. This pro-
cess is repeated at each frame.
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Figure 3: Creating the output sequence from the chosen audio
segments.

4. Experiment setup
4.1. Acoustic features

In the acoustic signal domain, an excitation-filter model
of speech is considered. 25 Mel-cepstral coefficients
(MCEPs) [14] are extracted as filter parameters and fundamen-
tal frequency (Fp) estimates are derived as excitation features
for every 10 ms in a frame with 27 ms length. These features
represent the acoustic speech unit. To finally synthesize the con-
verted speech signal we use two different methods:

e The Mel Log Spectrum Approximation (MLSA) filter
method [15], which takes the generated Fp and MCEPs
as input.

e Choosing the optimal unit sequence as described in
Sec. 3 and using the obtained time stamps to slice and
concatenate the corresponding original waveforms of the
training utterances. This direct concatenation method
uses the speech segments directly and is therefore done
without further signal processing.

4.2. Electromyographic features

We evaluate a feature which is based on a composition of time-
domain features [16]. For a given feature f, f is its frame-
based time-domain mean. P is the corresponding frame-based
power, and zs is the frame-based zero-crossing rate. S(f, n) is
the stacking of adjacent frames of the feature f in the size of
2n 4+ 1 (—n to n) frames, which is used in order to account for
time-context information.

For an EMG signal with normalized mean z[n], the nine-
point double-averaged signal w(n] is defined as

w[n]zé Z Z zn+k+1]

k=—41=—4

(&)

The high-frequency signal is p[n] = z[n] — w[n], and the rec-
tified high-frequency signal is 7[n] = |p[n]|. The final feature
TDn is defined as follows:

TDn = S(TDO, n), where TDO = [W, Py, Py, 2zp, T]
(0)
This TDn feature is computed from each of the EMG chan-
nels, then a fused vector is formed by stacking each channel
vector, and a Linear Discriminant Analysis (LDA) is applied to
reduce the dimensionality of the final feature vector to 32. The
LDA matrix is computed on the train data of each session on
the 45 English phones, plus one silence phone. We use this fea-
ture because it performs better than simple features tested in the
preparation phase and also to be able to compare the results to
a frame-based approach from our prior work [8].
It is known (e.g., [17, 18]) that there exists an anticipa-
tory effect of the EMG signals compared to the simultaneously
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recorded speech signals. We model this anticipatory effect by
adding a time delay of 50ms to the EMG signals.

Note that the electrode array recordings provide 35 chan-
nels, instead of six EMG channels given by the single elec-
trodes. We visually inspected the EMG signals and discarded
the noise channels to finally use a set of 18 channels. Further
details about the positioning and processing of the electrode ar-
ray signals can be found in [9].

4.3. Experimental results

For evaluation of the proposed EMG-to-speech conversion we
use the Mel Cepstral Distortion (MCD) [19]. The MCD is a
scaled Euclidean distance between the spectral features of the
target audible speech and the spectral features of the synthe-
sized EMG speech in decibel. Smaller numbers implicate better
results.

First, the MCD is computed for each frame, then it is aver-
aged over all frames of an utterance. Note that the source EMG
signal and the target audio signal are recorded synchronously,
hence the converted audio signal and the target audio signal are
automatically aligned as well and we do not need to perform
any alignment here.

The Fp estimation accuracy is evaluated by a
voiced/unvoiced decision rate. U/U and V/V give the
amount of all frames that are correctly recognized as unvoiced
or voiced, respectively.

4.4. Audible/audible units

To evaluate the general feasibility of our approach and to in-
vestigate whether the amount of training data is sufficient, we
performed an oracle experiment, where the audible features are
taken as source and target features. The source segment of each
unit consists of the audible MCEPs and the target segment con-
tains the MCEPs plus the F{, feature. We refer to this method as
Aud2Aud. The Unit Selection system is trained as described in
Sec. 3 and tested on unseen data to investigate if enough units
are available to synthesize a proper acoustic output. We ob-
tain an intelligible speech output, indicated by a mean MCD of
4.14. 90.6% of the voiced and 89.1% of the unvoiced frames
are classified correctly. The results on all 4 sessions are shown
in Table 2.

Table 2: Mel cepstral distortions and Voiced/Unvoiced (V/U)
accuracies with Aud2Aud mapping approach for the single elec-

trode (S) and array (A) recording sessions.
[ Spk1-S [ Spk2-S [ Spkl-A [ Spk2-A

MCD | 4.08 4.14 3.95 4.40
V-Acc | 91.25% | 89.75% | 92.16% | 89.11%
U-Acc | 85.71% | 88.78% | 91.36% | 90.74%

The top of Fig. 6 shows the exemplary spectrograms of a
synthesized output, generated with the MLS A-filter method, the
direct wave-segment concatenation method, as well as the target
audible utterance.

4.5. EMG/audible units

Our observations from the Aud2Aud mapping show that the
amount of training data is sufficient to generate a proper speech
output and that an Fy accuracy of around 90% can be achieved.
We therefore applied our framework to an electromyographic
feature input. We evaluated different frame sizes and stack-
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Figure 4: Mel cepstral distortions of EMG2Aud mapping ap-
proach, using different stacking widths.

ing widths n for the TDn feature. Fig. 4 shows the results of
the EMG-to-speech conversion for different contextual stacking
widths with 27ms frame size, giving a mean MCD of 6.03 with
TD20. We also evaluated a frame size of 48ms, but obtain only
slight differences to the results with 27ms.

Fig. 5 shows the results of the Fj evaluation. Given are the
amount of frames that are recognized as voiced (V) or unvoiced
(U) frames. E.g. V/U denotes the amount of frames that are
recognized as voiced, but are unvoiced in the reference. Using a
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Figure S: Fy  results  (top-to-bottom:V/U,U/V,V/V,U/U
V=Voiced, U=Unvoiced Frames, order is hypothesis/reference)
with EMG2Aud mapping approach, using different stacking
widths.

higher stacking width improves the voicing accuracy, although
no clear stacking optimum can be observed. Accuracies around
75% result in proper synthesized outputs, but still show room
for improvement. An example for a synthesized output can be
seen at the bottom of Fig. 6.

As a final experiment, we also evaluated the effects of dif-
ferent unit widths and shifts on the output performance. It can
be observed that reducing the shift between the units gives a
clear decrease of the MCD (about 10% relative improvement)
for all recording sessions, whereas the variation of the unit
width has only a slight effect on the output. On average, the
reduction of the unit width from 11 to 9 frames yielded a rela-
tive improvement of 1.19%. The results for all investigated unit
widths and shifts are shown in Fig. 7.

A comparison of these results to previous work [8], where
a frame-based EMG-to-speech mapping is used and the same
data (session Spkl-S and Spk2-S) is shared, shows that we ob-
tain a MCD of 5.75 resp. 5.19 with our unit selection approach,
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Figure 6: Spectrograms of target audible speech (middle),
Aud?Aud synthesis output (top) and EMG2Aud synthesis out-
put (bottom), both using the MLSA-filter method and the direct
wave-segment concatenation method of the utterance “The out-
ages were apparently caused by system failure not sabotage.”
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Mel Cepstral Distortion
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Figure 7: Mel cepstral distortions of EMG2Aud unit selection
approach with TD15 features, using different unit widths (uw)
and unit shifts. See text for details.

compared to 5.92 resp. 5.6.

5. Conclusions and future work

We successfully showed the feasibility of a unit selection ap-
proach to convert surface EMG signals of the articulatory mus-
cles to audible speech. Using only a small amount of training
data (approx. 30 min) yields promising conversion results with
an average MCD of 5.4. There will be more work on evaluating
the framework by conducting listening tests including a more
detailed comparison to the frame-based approach [8]. To fur-
ther improve the conversion framework we plan to extend the
amount of data, to use EMG and acoustic signals from multiple
recording sessions and to evaluate different cost functions for
target and concatenation cost.

The unit selection approach gives us a number of other op-
portunities for improvement, like the usage of additional infor-
mation in the unit database (e.g., part-of-speech tagging, addi-
tional prosodic information) or even the possibility to integrate
other signal sources to enable a multi-modal silent speech inter-
face.
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