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Abstract. We present a system for classification of nine voluntary facial
actions, i.e. Neutral, Smile, Sad, Surprise, Angry, Speak, Blink,
Left, and Right. The data is assessed by an Emotiv EPOC wireless
EEG head-set. We derive spectral features and step function features
that represent the main signal characteristics of the recorded data in
a straightforward manner. With a two stage classification setup using
support vector machines we achieve an overall recognition accuracy of
81.8%. Furthermore, we show a qualitative evaluation of an online system
for facial action recognition using the EPOC device.

1 Introduction

There has been a great research interest on non-invasive BCI systems over the
last couple of years. Numerous systems have been created that are successfully
used as communication devices for people with disabilities, for prostheses con-
trol, in rehabilitation, or for mind-games. More recently, passive BCIs gain rais-
ing attention [14]. Passive BCIs are expected to provide computer systems with
information about a user’s cognitive and affective mental states. States such as
attention, workload, or emotions have been recognized successfully by BCI sys-
tems. While BCIs can enhance the efficiency and user satisfaction (e.g. [10]), the
integration of passive BCIs into human-machine interfaces causes many chal-
lenges which need to be overcome.

First and foremost, those parts of the EEG signal that do not origin from
neurological phenomenons are considered as artifacts. Artifacts generated by
the user’s muscle activity, movements of the eyes, tongue, or electrical potentials
caused by body movements may impact the complete frequency range of EEG
signals. Therefore, they can interfere with the features used for BCI systems
and cause misleading results. To avoid such artifacts, experimental setups are
heavily controlled and often force the users to restrict their natural movement
(e.g. refrain from muscle activity or eye blinks). However, for intuitive interaction
with BCI systems, this is not acceptable and thus, artifacts are unavoidable and
have to be dealt with.

Many current BCI systems simply ignore these effects, which causes poor
recognition results when artifacts are present. One approach to deal with those
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influences is to try to clean the signals using automatic rejection, frequency fil-
tering, regression techniques using EOG signals, or blind source separation [7].
However, the impact of such techniques on the signals strongly depends on the
user’s activity causing them. A blind use of artifact removal techniques may
have effects that can be as harmful as the original artifacts themselves (e.g. due
to overestimation of artifacts or removal of relevant brain activity). In order
to avoid deteriorating effects by blind artifact removal we propose to use ex-
plicit classification of non-brain activity to enable specialized artifact reduction
methods.

From a user’s perspective, one may unconsciously learn to control a system
that is susceptible to artifacts by mimicking EEG activity, for example by raising
the eyebrows or producing eye blinks [13]. Furthermore, there is a strong rela-
tionship between facial actions and natural communication signals, such as social
cues and emotions [2]. In addition to that, interesting behavioral information can
be assessed from eye movements or the eye blinking rate. Both, facial activity
and eye movement can be recognized by a passive BCI system from system-
atic artifacts to get additional information about the user. Therefore, for BCIs,
recognition of non-brain activity is important to be removed when unwanted,
but to be interpreted when it contains relevant information.

Facial activity can also be assessed using video or EMG electrodes. However,
deriving it directly from the EEG signal comes with the benefit of avoiding ad-
ditional sensors. Furthermore, it yields the most direct connection between the
facial activity and the influence on the EEG signal which is important when
artifact removal is of interest. Consequently, we present in this paper the ex-
plicit recognition of facial actions and thus to provide a means to directly reduce
artifacts of facial mimics and eye movements in a passive BCI system. For this
purpose we describe a new approach for recognition of 9 different facial ac-
tions including facial mimics and eye activity from data recorded by the Emotiv
EPOC, a low-cost EEG head-set designed for the consumer market.

2 Related Work

Recognition of facial expressions using visual information is widely researched.
Ekman and Friesen developed the Facial Action Coding System (FACS) [6], a
taxonomy to characterize nearly any facial activity. The fundamental atomic
facial muscles or small muscle groups involved in facial expressions are called
Action Units (AUs).

Some articles (e.g. [2], [11]) reviewed findings on the neural basis of sponta-
neous and voluntary expression of facial actions. The reported activation pat-
terns strongly depend on which facial action is performed and involve several
parts of the brain, such as motor cortex, frontal cortex, and areas involved in
emotional processing. EEG has only rarely been used to investigate brain ac-
tivity associated with the expression of facial actions because of the artifact
problems [11].
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Only few works have addressed classification of facial actions by EEG. The
first research paper that proposed a recognizer for voluntary facial expressions in
the context of EEG based BCIs was Chin et al. [4]. They presented an extension
of the Filter Bank Common Spatial Pattern algorithm to multiclass classification
and showed very good classification performance of 86%. They evaluated the
system on 6 types of facial expressions, i.e. smile, straight, wince, agape, stern,
and frown. Data was recorded using a standard EEG system with 34 electrodes.
For classification they used a Naive Bayes Parzen Window classifier which was
extended by a decision threshold based classification mechanism, which increased
the recognition results for classes with lower accuracies.

Boot [3] presented a system for facial expressions recognition from EEG.
They used an EEG cap with 32 electrodes to discriminate between four ex-
pression classes corresponding to neutral, angry, smile, and angry-pout. They
applied Common Spatial Patterns and used Linear Discriminant Analysis for
classification. They found that predominantly muscle activity was classified and
that frontal EEG electrodes are most important for classification performance.

The Emotiv EPOC neuro head-set is a low cost EEG acquisition system for
the consumer market [1]. In contrast to traditional EEG caps it allows for rather
unobtrusive EEG recordings. The wireless device can be attached by the user
himself or herself within a very short amount of time. It is comfortable to wear
and uses saline electrodes which do not require electrode gel in the user’s hair.
However, the data acquired by such a consumer device may be more challeng-
ing for automatic processing due to the lower signal quality. Emotiv provides
software that aims to recognize facial expression of the user. The system can
discriminate eye blinks, winks, clenching of teeth, movement of eye brows, smil-
ing, smirking, and laughing [1]. The growing user community of the EPOC has
built numerous applications with the device including the control of a wheelchair
using mimics. However, the Emotiv software is only available as a black-box and
no published information are available which describe the functionality and per-
formance of the algorithms.

In this work, we extend on the existing systems by including classes which
describe facial actions such as speaking and different types of eye movement
typically appearing in less controlled experimental setups. We also use a much
more comfortable recording device with less electrodes than a standard EEG
cap to foster more natural setups.

3 Data Acquisition

3.1 Facial Actions

In our experiment participants executed the 9 different facial action classes listed
in Table 1. We selected these facial actions because they are relevant for human-
machine interaction and occur frequently as social signals in natural interaction
(e.g. [2]). Furthermore, they have a significant influence on the EEG signal, which
makes artifact handling necessary to obtain the brain signal.
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Table 1. Facial expression classes and corresponding Action Units

Class name Action Units involved

Neutral AU0 (Neutral)

Smile AU6 (Cheek raiser), AU12 (Lip corner puller)

Sad AU15 (Lip corner depressor), AU17 (Chin raiser)

Surprise AU4 (Eyebrow lowerer)

Angry AU1 (Inner brow raiser) AU2 (Outer brow raiser)

Speak AU50 (Speaking)

Blink AU45 (Eye blink with both eyes)

Left AU61 (Eye movement to the left)

Right AU62 (Eye movement to the right)

The Neutral facial action class is characterized by relaxed muscles and
eyes focused on a point on the screen. Smile corresponds to a broad smile that
mainly involves muscles around the mouth and the cheek. It may be related to
happy social signaling, however it is well known that the relationship between
smiling and affective states is much more complex. A prototypical Sad expres-
sion moves the mouth corners downwards and the lower lip upwards. This pout
expression can be related to a depressed or offended state. The Angry facial
mimic moves the inner eyebrows into direction of the face center and gives an
evil or angry impression. For the Surprise class subjects were instructed to
tear up the eyebrows so that it creates wrinkles on the forehead. The expression
gives the notion of being skeptical, surprised or puzzled. The Speak class con-
tains speech produced by counting numbers aloud. Blink corresponds to one
eye blink with both eyes. Left contains horizontal eye movement to the left and
Right horizontal eye movement to the right.

Multiple of these classes share the same face region and muscle groups, which
is expected to make the classification task more challenging and to give insights
on the possible limitations of the assessment of facial actions by EEG technology.
As we see from the involved AUs (see table 1), Smile and Sad mainly involve
muscles around the mouth, Angry and Surprise movement of the eyebrows,
and Blink, Left and Right contain eye movements. Speak also involves com-
plex activity of the facial muscles and additionally movement of the tongue.

3.2 Experiment Design

For development and evaluation of the system, data from five subjects have been
recorded at the Karlsruhe Institute of Technology (KIT). Before the experiment
all subjects were instructed shortly and practiced to perform the different facial
actions according to the descriptions in section 3.1. To reduce ’artifacts’ in the
data, subjects were asked to avoid unrelated muscle and eye activity during
the recording parts of the trials. The execution of the facial actions was very
intuitive and natural for the subjects. However, small deviations from the FACS
and variability in the execution of the facial actions might occur as the data has
not been filtered for correct execution using validated EMG or video recordings.

For each trial an icon and the class name were presented on the computer
screen. Subjects started the expression phase on their own by a key press. After
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2 seconds of recording, a gray bar was shown for 4 seconds to avoid influences
of the previous trial. Subsequently, the next trial started.

This procedure was repeated for 190 trials, i.e. 20 trials for each class, except
for Neutral which had 30 trials. To avoid temporal effects in the classification
the facial action classes were randomly ordered.

3.3 Spectral Data Analysis

Fig. 1. Log power spectra of the facial action classes. Top: Blink, Left, and Right in
contrast to Neutral. Bottom: Smile, Sad, Surprise, Angry, and Speak in contrast
to Neutral.

Biological artifacts, such as potentials caused by muscle activity, movements
of eye or tongue, cause significant distortions on the electric fields over the
scalp, which can easily be recognized in the measured signals by visual inspec-
tion. Figure 1 shows log spectrograms for the different classes averaged over all
channels and all subjects. The first plot shows the eye activity related classes
Blink, Left, and Right in contrast to the Neutral class (dashed curve). A
strong increase of power for frequencies below 15 Hz due to the eye activity
can be observed. These potentials are caused by the movement of the retinal or
cornea-retinal dipole and the eyelids [5]. They produce high-amplitude patterns
in time-domain predominantly at the frontal electrodes. The second plot shows
the mimics activity related classes Smile, Sad, Surprise, Angry, and Speak

in contrast to the Neutral class (dashed curve). Muscle activity has a strong
influence on a wide frequency range, with greatest amplitude between 20 and 30
Hz [8]. For the Speak class, we expected influences at low frequencies by move-
ment of the dipole at the tongue (glossokinetic potentials) [12], as well as muscle
activity from articulation at higher frequency bands. However, the spectrogram
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of Speak matches the one of Neutral very closely at frequencies above 10 Hz.
This indicates that muscle activity due to articulation had only a small impact
in our experiment. The frequency characteristics of all activity classes differ sig-
nificantly from the Neutral class. Due to the characteristic impact of muscle,
eye, and tongue movements on the signals, we expect that brain signals play a
minor role in this classification task.

4 Recognition System

Fig. 2. Block diagram of the recognition process.

Figure 2 shows a block diagram of the system components involved in the
recognition process. First, data is acquired from the Emotiv EPOC device using
our recording software BiosignalsStudio [9]. The EPOC headset has 16 saline
electrodes at positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4,
F8, AF4 referenced to P3 and P4. The raw sensor data from the device has a
sampling rate of 128 Hz and is notch filtered at 50 Hz and 60 Hz. We use the
raw signal data of each trial, re-reference it to common average montage and
remove baseline offsets and linear trends from each channel. Then 3 different
types of features are extracted that model the main characteristics of the classes
as described in section 3.3:

1. We estimate the spectral density in the rage 0-45 Hz using Welch’s method.
This results in a feature vector of 34 elements for each channel when using
a window length of 0.75 seconds. Including higher frequencies showed no
increase of recognition accuracy, which appears to be caused by a strong
attenuation of spectral power above 45 Hz due to the notch filters of the
EPOC device at 50 Hz and 60 Hz (see Figure 1).

2. Additionally we calculate the ratio between the frequency bands 0-10 Hz
and 25-45 Hz as feature.

3. To calculate features that are able to describe horizontal eye movement ac-
tivity, we use the potentials from electrodes left of the left eye and subtract
them from the potentials assessed right of the right eye:

XHEOG = (AF3 + F7)− (AF4 + F8)
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To this time series, we optimally match two simple step functions, each
consisting of two piecewise constant segments, by finding the largest local
increase and decrease hup and hdown of the level of the time series:

hup = argmax
k

1

l

l∑

i=1

XHEOG[k − i]−
1

l

l∑

i=1

XHEOG[k + i],

hdown = argmin
k

1

l

l∑

i=1

XHEOG[k − i]−
1

l

l∑

i=1

XHEOG[k + i],

where l is the length of the interval before and after the step approximated
by a constant function. For the experiments in this paper we chose l = 20
samples.

We apply a two stage classification scheme to recognize the facial actions.
In the first stage, a linear support vector machine (SVM) discriminates the eye
activity classes Blink, Left, and Right from a class consisting of the remaining
facial actions. If the latter class is classified, the second stage uses a linear SVM
to discriminate Neutral, Smile, Sad, Angry, Surprise, and Speak. Within
both stages a one-vs-one approach is used for multiclass classification. SVMs
with radial basis function kernels gave slightly worse classification results, which
can be accounted to a higher robustness of the linear models when training with
a small amount of data.

The two stage classification scheme allows to calculate specialized features
for each of the two stages. In the first stage we use a feature vector composed
of the spectral density features for each channel (1), hup, and hdown (3). In the
second stage, we use a feature vector composed of the spectral density features
for each channel (1) and the power density ratio (2).

5 Evaluation and Results

NEUTRAL SMILE SAD SURPRISEANGRY SPEAK BLINK LEFT RIGHT
0

0.2
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0.8

1
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Recall

Fig. 3. Precision and recall for each facial action class averaged over the five subjects.

We evaluated the two stage classification system using 10-fold cross-validations.
This resulted in the following recognition accuracies for the five subjects:
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Table 2. Confusion matrix of the five subjects using the two stage classifier. Facial
action classes are Neutral (N), Smile (Sm), Sad (Sa), Surprise (Su), Angry (A),
Speak (Sp), Blink (B), Left (L), and Right (R).

true N true Sm true Sa true Su true A true Sp true B true L true R

pred. N 119 3 23 1 6 10 0 2 6

pred. Sm 0 89 5 1 0 1 0 0 0

pred. Sa 10 5 56 2 12 4 0 3 0

pred. Su 1 0 0 90 2 0 0 0 0

pred. A 7 1 8 3 71 1 2 1 2

pred. Sp 11 0 6 1 1 80 0 0 3

pred. B 0 0 2 0 3 1 98 0 0

pred. L 1 0 0 1 3 1 0 90 5

pred. R 1 2 0 1 2 2 0 4 84

S1 86.8% (SD=5.1%), S2 71.1% (SD=7.6%), S3 81.1% (SD=11.2%), S4 89.5%
(SD=10.2%), S5 80.5% (SD=6.6%) (means and standard deviations over the 10
iterations). The overall recognition accuracy was 81.8% (SD=7.1%).

Figure 3 shows precision and recall for each of the facial action classes aver-
aged over the five subjects. Precision is the ratio between the number of times
the class was correctly classified and the number of times the class was predicted
by the classifier. Recall is the ratio of the number of times the class was correctly
classified and the number of times the class should be classified according to the
ground truth.

Table 2 shows the classification results in form of a confusion matrix summed
over all iterations of the cross-validation of all subjects. The most frequent confu-
sions occur between Neutral and Sad (19% off all misclassifications). For most
facial action classes confusions occurred rarely in the experiment or are rather
equally distributed across subjects. However, the confusions of Sad and Speak

are predominantly caused by single subjects: The results of S2 account for 16 of
21 confusions between Neutral and Speak, and S5 causes 18 of 33 confusions
between Neutral and Sad. This results in a high inter-subject variance for
these classes, which can also be observed in the error bars of Figure 3.

An evaluation using only the frontal electrodes AF3, F7, F3, F4, F8, AF4
(to investigate the possibility of electrode reduction) shows considerably more
confusions among the classes Neutral, Smile, and Sad, which results in a drop
of average recognition accuracy from 81.8% to 67.7%. In contrast to Chin et al.
[4], who associated the lower recognition results with missing information on
activity of the motor cortex, we assume that in our case this is caused by muscle
and eye movement activity measured at the non-frontal locations with the full
electrode setup. This is indicated by the low coverage of the motor cortex by the
EPOC device. Additionally, visual inspection of the temporal channels T7 and
T8 of Smile shows strong muscle activity which dominates any activity emitted
by the motor cortex.

To test the online capabilities of the facial action recognition system de-
scribed in this paper, subject S1 performed each of the facial mimics for about
10 seconds. After that, 3 eye blinks were recorded, followed by 2 times moving
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Fig. 4. Online classification results of a sequence of facial actions. Binary classification
results are shown as green and blue bars for each second. Green overlays indicate time
periods where a particular facial action should have been recognized, yellow overlays
indicate time periods where Neutral should have been recognized. Therefore, dark-
green bars indicate correct classifications, light-green regions indicate false negatives,
light-blue and dark-blue bars indicate false positives.

the eyes to the left and back to center and 2 times to the right and back to the
center. We modified the two stage classifier to output the recognition result of
the second stage (for mimics classification) in addition to the first stage result
(for eye activity recognition), when eye activity is recognized. This enables the
system to recognize eye activity and facial mimics at the same time.

Figure 4 shows the online recognition results. Green overlays indicate the pe-
riods of time when a particular facial action should have been recognized, yellow
overlays indicate periods of time when Neutral should have been recognized. A
high precision of all facial action classes can be observed. However, recognition
of Blink always implied a simultaneous recognition of Speak by the second
classification stage. A similar effect can be found for Left and Angry. This in-
dicates that the second stage classifier is influenced by the eye activity, which has
not occurred in the training data. Removal of eye activity, e.g. by Independent
Component Analysis, before classification by the second stage could mitigate
this effect. Most recognition errors occur at start and end of an expression. This
can be associated with the missing alignment in online recognition (i.e. windows
can partly contain facial activity). Furthermore, the onset and offset of a fa-
cial actions can cause strong low frequent potentials. To cope with such effects,
sequential classifiers, such as Hidden Markov Models, might be used to better
model the dynamic character facial expressions.

6 Conclusion

In this paper, we showed that it is possible to use an EEG-based system for the
effective classification of a large number of different facial actions. We showed
that high recognition rates can be achieved using straightforward spectral fea-
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tures and step function features in a two stage classification scheme. Further-
more, we extended the system for online application and the more challenging
recognition of parallel occurring facial actions. Such a recognition system can
give additional insights on the user’s behavior, as well as on the acquired signals
that may be useful for artifact handling.

Further experiments are needed to investigate how the findings transfer to
spontaneous facial actions in natural situations. In such a setup the ground truth
of the performed facial actions could be assessed by EMG or video recordings.
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