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Abstract—Functional near infrared spectroscopy (fNIRS) is
becoming more and more popular as an innovative imaging
modality for brain computer interfaces. A continuous (i.e. asyn-
chronous) affective state monitoring system using fNIRS signals
would be highly relevant for numerous disciplines, including
adaptive user interfaces, entertainment, biofeedback, and medical
applications. However, only stimulus-locked emotion recognition
systems have been proposed by now. fNRIS signals of eight
subjects at eight prefrontal locations have been recorded in
response to three different classes of affect induction by emotional
audio-visual stimuli and a neutral class. Our system evaluates
short windows of five seconds length to continuously recognize
affective states. We analyze hemodynamic responses, present a
careful evaluation of binary classification tasks and investigate
classification accuracies over the time.

I. INTRODUCTION

Emotions are psycho-physiological processes that play a
key role in human life. They are an essential part of social
interaction and can have strong regulatory influence on many
important conscious and unconscious aspects of human behav-
ior, including influences on perception, learning and decision
making. Since the 2000s, affective computing [1] has grown
to a highly vivid area of research. Today, intelligent machines
that sense human emotions in order to act in a natural, human-
like and empathic way, can still only be found in science
fiction movies. However, a few attempts have successfully
shown that systems adapting to cognitive or affective user
states can be advantageous and preferred by users (e.g. [2],
[3]). In addition to that, affective computing technology has
strongly contributed to multiple disciplines besides the field of
human-machine interaction. For example, emotion recognition
systems have been used in medical applications, such as autism
spectrum disorders therapy (e.g. [4]). In the future, numerous
application could benefit from a possibility to continuously
monitor a person’s affective states, including adaptive user
interfaces, biofeedback, and the assessment of the quality of
life of patients in clinical settings (bed-site monitoring of
emotions).

Affective states manifest themselves in various biosignals.
However, they originate in different brain circuits that relate to
emotions. Besides subcortical areas, such as parts of the limbic
system (e.g. amygdala and anterior cinguate cortex) [5], [6],
[7], the essential role of the prefrontal cortex (PFC) in emotion
induction and regulation has been shown (e.g. [8]).

For several years, Brain Computer Interfaces have successfully
been developed that provide strongly motor impaired patients
a way of communication and control of computing devices.
More recently, so-called passive BCIs [9] gain rising attention.

Instead of using an explicit control intention, they aim at
passively observing information about cognitive or affective
mental states from the users’ brain activity. Several passive
BCI systems for monitoring of user states such as attention,
workload, and also affective states have been proposed. Most
of these systems use EEG as input modality [10]. Since the
last few years, fNIRS is becoming more and more popular as
a non-invasive measurement technique for BClISs.

fNIRS is an imaging modality detecting changes in regional
cerebral blood flow. According to the blood oxygen level-
dependent (BOLD) effect, oxygenated (HbO>) and deoxy-
genated (HbR) hemoglobin are functional indicators for brain
activity. fNIRS, exploits the fact that HbO, and HbR have
different absorption rates for light in the near infrared part
of the spectrum. As near infrared light disperses through
biological tissue, but is absorbed by hemoglobin, light sources
and detector optodes placed on the subjects’ scalp can be used
for functional imaging. Using the modified Beer-Lambert Law
[11] changes in the cerebral blood flow, and thereby brain
activity, can be estimated from the changes in light intensities.
Measurement positions arise roughly in the middle between
transmitter and detector in a depth of half the source detector
distance. Typically, HbO, levels in a cortical area rise with
brain activity and peek approximately 5 to 10 seconds after
the beginning of activation, HbR levels should fall in the
same intervals. Compared to fMRI, which also measures the
BOLD response, fNIRS is comparably cheap, portable and
does not confine the subjects. In comparison to EEG, fNIRS is
not susceptible to electrical artifacts from environmental and
physiological sources. Furthermore, no conductive gel needs
to be used and frontal fNIRS recordings, where measurements
are not obstructed by hair, have very short setup times (about
one minute).

In this paper, we explore advantages and limitations of
a system for the continuous (i.e. asynchronous) decoding of
affective states from fNIRS signals recorded at prefrontal loca-
tions in response to audio-visual stimulation. To the best of our
knowledge, fNIRS studies on emotion recognition have only
investigated event-related responses to emotional stimuli using
stimulus locked evaluations, before. However, such setups are
primarily restricted to laboratory conditions. In most realistic
scenarios the point of time of an emotion triggering event
and the time span of an affective state are unknown. Our
system classifies simple features extracted from short slices of
the fNIRS signal stream over time and continuously outputs
estimates of the affective user state.



A. Related Work

Numerous pattern recognition systems for the automatic
classification of emotions from speech, visual, or biophys-
iological data have been proposed (see e.g. [12], [13] for
review). They typically follow a pattern recognition approach,
where features are extracted from preprocessed input signals
and classified by machine learning methods. For training data
collection, mostly controlled laboratory settings are used. The
perception of emotional stimuli has been shown to be an
effective method for emotion induction in such experiments.
Standardized picture sets and sound samples for emotion
induction are available. In numerous studies emotional stimuli
based on the International Affective Picture System (IAPS)
[14] and International Affective Digital Sounds (IADS) [15]
have been used. To quantitatively describe emotions, discrete
classes of emotions (e.g. Ekman’s basic emotions [16]) or
dimensional emotion models (e.g. Russell’s Pleasure-Arousal-
Dominance scale [17]), are most widely used. IAPS and TADS
have been rated using the Self Assessment Manikins in the
dimensions pleasure, arousal and dominance by large person
groups [18], [15].

Several studies investigated fNIRS signals in the context of
emotions and showed significant activations of the prefrontal
cortex in response to emotionally loaded pictures. Herrmann
et al. [19] showed that the prefrontal cortex is activated in
response to emotional induction by pictures and facial expres-
sions using fNIRS and investigated these effects with regard to
task requirements. Hoshi et al. [20] found that most subjects
showed decreases in HbO, in multiple channels during the
presentation of pleasant pictures. Half of the subjects showed
significant increases of HbO during unpleasant pictures. Kat-
suhiko et al. [21] reported activations of HbOs5 in right frontal
regions during anticipatory anxiety. Further studies reported
gender differences in prefrontal activations during emotion
induction [22], [23] and investigated differences in emotion
induction and emotion regulation [24].

In the last few years, fNIRS based Brain Computer Inter-
faces have been developed that use different task paradigms,
including motor imagery, mental arithmetics, mental workload
and speech and language (e.g. [25], [26], [27], [28], [29]). To
the best of our knowledge Tai and Chau [30] were the first
who investigated single-trial recognition of an emotion task.
They recorded 16 channels fNIRS from the prefrontal cortex in
response to affective induction using emotional images. Their
system applied a genetic algorithm to find the optimal analysis
interval length, feature set, and classifier. They report very high
recognition rates of 75-97%, however, they only investigated
discriminating baseline periods from emotion induction pe-
riods and not different emotion classes. Hosseini et al. [31]
decoded if subjects like or dislike different visually presented
objects using fNIRS signals recorded from the anterior frontal
cortex. Moghimi et al. [32] showed that emotional responses to
music can automatically be classified using prefrontal fNIRS
signals. They discriminated emotional music from brown noise
and emotional valence (positive versus negative) with average
recognition accuracies above 70%. Asano et al. [33] induced
comfortable and uncomfortable affective states by different
sounds (music and scratch sounds). They measured 32 chan-
nels of frontal fNIRS and discriminated two affective states
using Bayesian nets with an average accuracy of 67%.

II. MATERIAL AND EXPERIMENTAL DESIGN
A. Participants

8 healthy male volunteers participated in the experiment
(mean age 27.615.2 years). All subjects had normal or cor-
rected to normal vision and normal hearing. None of the
subjects had a history of brain injury, cardiovascular disease,
drugs, or psychiatric conditions. Subjects have been instructed
to the experiment and provided informed consent before the
start of the recordings.

B. Stimuli

We composed a slideshow for audio-visual emotional in-
duction containing stimuli from the International Affective
Picture System (IAPS) [14] and International Affective Digital
Sounds (IADS) [15]. Pictures and sounds with extreme ratings
in valence and arousal according to the self assessment ratings
in [18], [15] were selected and categorized into the following
three emotion classes:

e VA - Maximum valence and maximum arousal: This
class contained e.g. pictures of female erotica and
exciting sports, rthythmic music and shouts of joy.

e Va - Maximum valence and minimum arousal: This
class contained e.g. pictures of flowers and animals,
calm classical music and environmental sounds.

e VA - Maximum arousal and minimum valence: This
class contained e.g. pictures of multilated persons and
threatening situations and sounds from air raid, and
screaming persons.

The picture and sound items' were selected to achieve a
strong emotional stimulation and discriminability between the
classes. Similar slideshows for audio-visual emotion induction
have successfully been used in one of our previous studies
[34], where subjects’ self-assessments rated the stimuli as
having a strong emotional impact corresponding to the emotion
classes in terms of valence and arousal. Table I summarizes
average subjective ratings of the pictures and sounds used in
the experiment.

C. Experimental procedure

Affective pictures were presented on a computer screen
located in about 0.5 meters distance, while subjects were

IThe following IAPS picture items have been used:

VA: 4001, 4002, 4003, 40006, 4141, 4142, 4150, 4180, 4220, 4225, 4232,
4235, 4250, 4255, 4274, 4275, 4279, 4290, 4300, 4310, 4311, 4607, 4608,
4651, 4652, 4659, 4660, 4664, 4670, 4683, 4694, 4695, 4800, 8030, 8080,
8185, 8400, 8501; Va: 1440, 1441, 1460, 1560, 1590, 1600, 1601, 1602, 1603,
1604, 1610, 1620, 1640, 1670, 1900, 2000, 2050, 2070, 2170, 2260, 2304,
2341, 2360, 2370, 2501, 5000, 5010, 5020, 5030, 5200, 5551, 5720, 5760,
5800, 5891, 7080, 7325, 7545, 7900; vA: 3000, 3010, 3015, 3030, 3051, 3053,
3060, 3062, 3063, 3068, 3069, 3071, 3080, 3101, 3102, 3110, 3120, 3160,
3168, 3170, 3181, 3250, 3261, 3266, 3301, 3400, 3500, 3530, 6230, 6260,
6313, 6510, 6540, 9400, 9405, 9410, 9433, 9570, 9635.1, 9810

The following IADS sound items have been used:

VA: 201, 202, 311, 215, 815, 716, 360, 200, 366, 717, 817, 205, 352, 367,
415, 204, 353, 216, 110, 355; Va: 112, 150, 151, 171, 172, 230, 262, 270,
370, 374, 377, 602, 705, 721, 725, 726, 809, 810, 811, 812; vA: 115, 260,
275, 276, 2717, 278, 279, 284, 285, 286, 290, 292, 420, 422, 424, 600, 624,
709, 711, 712



TABLE 1. SUBJECTIVE RATINGS ACCORDING TO [18] AND [15] OF
THE SELECTED PICTURES AND SOUNDS OF THE THREE EMOTION CLASSES.
MEANS (STANDARD DEVIATIONS) ON A 9 POINT SCALE.

Emotion IAPS IADS
Class Valence Arousal Valence Arousal
VA 7.48 (1.42) | 6.94 (1.88) 7.13 (1.79) | 6.95 (1.80)
vA 2.25(1.49) | 6.17 (2.31) 241 (1.61) | 7.29 (1.81)
Va 6.71 (1.58) | 3.49 (2.10) 6.31 (1.66) | 4.14 (2.06)
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sitting in a comfortable office chair. Sounds were played using
headphones at a moderate volume that was set identical for
all subjects. Each subject was instructed just to watch the
slideshow and to avoid unnecessary movements.

During one recording session subjects attended 30 emotion
induction blocks (10 blocks for each of the emotion classes
VA, Va, vA) of 35 seconds length. Each block contained 4-5
images and 4-8 sound samples. The order of the blocks and
the selection of pictures and sounds was pseudorandomized.
A neutral blank screen was displayed and no sounds were
played for 30-40 seconds after each block and at the beginning
of the experiment (called Neutral throughout the paper). The
duration of the Neutral phases was randomly varied between
30 and 40 seconds to reduce a potential systematic influence of
slow waves. The total recording time of one recording session
was about 35 minutes. Figure 1 summarizes the experiment
procedure.

D. fNIRS Measurement

To measure cerebral hemodynamics we used an Oxymon
Mk III system by Artinis Medical Systems. The montage con-
sists of four transmitter and four detector optodes. The optodes
were attached to the subjects’ forehead using a headgear,
so that its lower edge was shortly above the eyebrows und
the optodes were symmetrical to the head midline. Figure 2
illustrates the optode montage. Using this setup, the system
outputs concentration changes in oxygenated (HbO2) and
deoxygenated (HbR) hemoglobin at 8 source-detector pairs
(16 channels) at a distance of 3.5 cm using a sampling rate
of 25 Hz. A light intensity sensor has been attached to the
screen and recorded synchronously with the fNIRS data to
assess exact timings of the pictures during the experiment.

Fig. 2.  Optode montage used in the experiment Tx stands for transmitters,
Rx for detector optodes. The optode distances is 3.5 cm for all measurement
locations.

III. METHODS
A. Signal Processing and Artifact Removal

The measured fNIRS signals are usually subject to biolog-
ical and technical artifacts. Mostly influences from cardiovas-
cular activity, such as heart beats and slow waves (e.g. Mayer
Waves) as well as spikes caused by optode movements are
present in the recorded signals (see e.g. [35], [36] for more
detailed information on artifacts in fNIRS). To remove trends
and slow waves, we applied a moving average filter, averaging
over 180 seconds before and after each HbOs and HOR
sample, and subtracted its output from the original signal.
We applied an elliptic IIR lowpass filter with cutoff frequency
0.5 Hz (filter order 6) to remove higher frequency influences,
including heart beat. Movement artifacts and spikes were
removed using the wavelet based method proposed by Molavi
and Dumont [37].

B. Feature Extraction

Several different feature extraction methods have been used
for fNIRS based BCls, including simple statistical properties
of the time-domain signals, such as mean, standard deviation,
slope, kurtosis and skewness. These features intuitively ex-
press properties of the characteristic shape of hemodynamic
responses, when applied to stimulus-locked fNIRS signals.
However, in the case of continuous recognition, most of these
features do not reflect easily interpretable signal properties. We
decided to use only the mean value of short windows of the
HbO5 and HOR signals for the evaluations in this paper, as
preliminary experiments with other time-domain features did
not show strong performance improvements. More advanced
features, e.g. based on time-frequency transformations, might
represent additional information of the signals, however, the
mean has the advantages that it can very easily be calculated
and interpreted. In previous studies [30], [32], the mean was
also among the most successful feature to discriminate fNIRS
signals in emotion tasks.

In order to continuously classify affective states, windows
of 5 seconds length with 50 % overlap were extracted from
the preprocessed fNIRS signals. Window lengths between 2
and 15 seconds were evaluated and appeared to give similar
results, longer windows showed more unstable results, which
can be explained by the block length of 35 seconds and small
amount of data available. Each window was associated with
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Hemodynamic responses (grand averages) for the classes VA,vA,Va, and Neutral. The top row shows HbO> channels, the bottom row shows HbR

channels. Signal epochs start 5 seconds before the beginning of an emotion induction or Neutral block and end 10 seconds after the end of the blocks. Vertical
lines indicate begin and end of a block (as Neutral blocks have random length, the second and third vertical line in these plots indicate the time period where
the blocks end). The x-axes show time in seconds, the y-axes concentration changes of HbO2 and HbR.

its best fitting class label (Neutral, VA, Va, or vA).

We filtered out features that contained only little information
using a mutual information based feature selection. For this
purpose, mutual information between the continuous training
data of each feature and the corresponding discrete emotion
class labels (ground truth) has been calculated. Non-parametric
probability density functions were estimated by kernel density
estimation (Parzen windows). Features that contributed less
than 10% to the total mutual information were excluded from
the 16 dimensional feature vector.

C. Continuous Affect Classification

As the amount of data available to train and test the system

is very limited, we decided to use 10-fold cross-validations
for the evaluation of the classification performance of our
system. Using this evaluation scheme, one has to be careful
that no hidden information from the test data is used for
training, otherwise the performance will be overestimated.
The high temporal auto-correlation of fNIRS signals makes
it problematic to include examples very shortly before or after
the examples to be predicted in training, as neighboring train-
ing examples contain nearly the same information (e.g. this
makes common evaluation schemes including random shuffling
inappropriate).
In our cross-validation we split the data chronologically and
ensured that there is a time gap of at least one minute between
training and testing examples. In each fold of the cross-
validation the training data was balanced to an equal number
of examples for both classes, in order to avoid a bias of the
classifier towards one class. Balancing was done by removing
random examples from the training data. The mutual informa-
tion based feature selection was performed on the training data
in each fold of the cross-validation. We used support vector
machines [38] with radial basis function kernels to classify
the data. The penalty weight C' for the slack variables and the
kernel width v were estimated using 10-fold cross-validation
on the training data in each fold of the cross-validation
(Ce{275,273,...,210} vy e {2715 2713 . 23}).

IV. RESULTS AND DISCUSSION
A. Hemodynamic Responses to the Emotion Induction

In order to analyze the hemodynamic responses to the
four different classes during emotion elicitation, we extracted
stimulus-locked epochs starting 5 seconds before the begin-
ning of an emotion induction block until 10 seconds after
each emotion block. Figure 3 shows grand averages of the
hemodynamic responses after applying the preprocessing as
described in section III-A. Each plot in the upper row shows
HbO, channels, the plots in the lower row show HbR channels
averaged across subjects. The columns correspond to the
classes VA, vA, Va, and Neutral, respectively. Hemodynamic
responses to the emotion induction are obviously present and
show a typical shape at all channels and all classes. For the
three emotion classes (VA, vA and Va), HbO, channels show
an increase (hyper-oxygenation), while HbR show a decrease
in concentration few seconds delayed after the beginning of
each block. One can see that the hemodynamic responses
remain stable for the complete time of the emotion induction
(block length 35 seconds) and turn towards baseline after the
end of an emotion induction block. A contrary effect can be
observed for the Neutral plots, i.e. HbO- decrease and HbR
increase after the beginning of the block. This can be explained
as Neutral blocks occur directly after the emotion stimulus
blocks and include the decay of the hemodynamic activity.

B. Continuous Affect Recognition Performance

Figure 4 shows mean classification accuracies for all sub-
jects and all binary combinations of the four classes (Neutral,
VA, vA, Va) calculated using 10-fold cross-validation with a
1 minute gap between training and test sets. The error bars
indicate standard deviations across the ten folds of the cross-
validation. We calculated one-sided Wilcoxon signed rank tests
to test if the recognition accuracies are significantly (p < 0.05)
above the 50% chance level. All emotion classes (VA, VA,
Va) could significantly be discriminated from Neutral for
all subjects. The average performances across subjects were
65.4% (sd=4.0) for Neutral versus VA, 63.1% (sd=4.1) for
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Neutral versus Va, and 67.9% (sd=3.2) for Neutral versus
vA. Influences of the previous emotion block on the Neutral
class were analyzed and none of the Wilcoxon rank sum
tests showed significant differences between the classification
accuracies of Neutral, depending on the class of the previous
emotion block. The recognition rates in discriminating VA
against Va were not significantly above chance level. This
might be due to the fact that these classes are most similar
according to the valence and arouse ratings in Table I. Subjects
3 and 5 achieved significant results in discriminating Va from
vA. For VA versus VA, half of our subjects showed recognition
rates significantly above chance level. This indicates that dif-
ferences during high arousal result in more distinct activations
than response involving low arousal. The average recognition
rates across subjects were 51.8% (sd=4.0) for Va versus VA,
52.8% (sd=9.6) for Va versus VA, and 61.2% (sd=12.0) for
VA versus VA.
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Fig. 5. Classification accuracies as a function of the time distance from the
start of an emotion stimulation block. X-axis shows time offset in seconds,
y-axis shows average recognition accuracies.

To analyze the performance of the continuous recognition
in more detail, we calculated average recognition rates as a
function of the time distance from the start of the correspond-

ing emotion induction block. For this analysis the predictions
from the cross-validation experiments (previous paragraph)
were used. The time of each emotion induction and Neutral
block was split into analysis intervals of 5 seconds length
overlapping 4.5 seconds. The recognition accuracies of the
predictions that occurred within each analysis interval were
calculated (average across subjects). Figure 5 shows the result-
ing curves of all binary classification tasks. The x-axis shows
the start time of the analysis intervals. All binary classification
tasks show an increase in recognition accuracies after the begin
of emotion induction. Surprisingly, recognition rates show a
down trend for Neutral versus VA and Neutral versus Va
starting at 10-15 seconds, which appears not to be supported
by the plots in Figure 3. In all of the other recognition tasks
the performance increased and remained rather stable. This
analysis shows that the recognition results were not caused
by short peaks after the emotion triggering event, instead, the
continuous affective state classification using small windows
is effective for classifying longer affective state periods. The
peak values of the curves indicate that an optimal analysis
interval would have increased average recognition rates above
70% for the discrimination of emotion classes versus Neutral
in stimulus-locked evaluations.

V. CONCLUSION

In this paper, we presented a system for the continuous
(i.e. asynchronous) recognition of affective states from fNIRS
signals in response to different classes of audio-visual affective
stimulation. In comparison to the results reported by previous
studies, the performance of our system may appear inferior.
However, continuous recognition is a much more challenging
task than stimulus-locked evaluations. In this first study we
chose a simple setup that allows an easy analysis and interpre-
tation of all processing steps involved. Significant recognition
results indicate that it is possible to discriminate Neutral sig-
nals from signals recorded during emotion induction. Discrim-
inating different emotion classes against each other appeared
to be more difficult. However, the results show that strongly



different classes may also be discriminated using continuous
recognition. The analysis of classification performance over
time indicates that the continuous recognition of affective
states of longer duration (such as mood) might be possible
as recognition rates appear to remain stable for most of the
evaluated binary classification tasks. However, this should be
verified by further studies that, for example, include emotion
induction blocks of different lengths. In future work, most
importantly, the performance of the recognition system needs
to improved, for example by using individual optimizations
for each subject, optode montages with additional locations,
and advanced feature extraction methods. Further analyzes
should also investigate influences of perceptual properties of
the emotional pictures on the system performance in detail.
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