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Abstract
This paper summarizes our latest efforts in the development of
a Large Vocabulary Continuous Speech Recognition (LVCSR)
system for Tamil at different levels: pronunciation dictionary,
language modeling (LM) and front-end. Usually in Tamil there
are not many word-pronunciation pairs to train data-driven
grapheme-to-phoneme (G2P) converters. Therefore, we
explore the correlation between the amount of training data
and the performance of the grapheme-to-phoneme (G2P)
conversion. To address the morphological complexity of Tamil,
we investigate different levels of morphemes for language
modeling including a comparison between our Dictionary Unit
Merging Algorithm (DUMA) and Morfessor, followed by
various experiments on hybrid systems using word and mor-
pheme LMs. Finally, we integrate our multilingual bottle-neck
features framework with Tamil LVCSR. The final best system
produced 21.34% Syllable Error Rate (SyllER) on our Tamil
test set.

Index Terms: Tamil LVCSR, morpheme segmentation, lan-
guage model, hybrid system, multilingual bottle-neck features

1. Introduction
Recently, there has been a dramatic improvement in the perfor-
mance of speech and language technology with an increasing
number of systems being deployed in a large number of appli-
cations. Though Tamil is spoken by close to 70 million people
in India, Sri Lanka, Singapore, and Malaysia, it has failed to
receive the attention that some of the other languages in eco-
nomically developed countries have been receiving towards the
development of speech technology. A handful of the previous
works in Tamil include [2], [3], [4], and [5]. Although there
has been significant effort to address specific parts of a speech
recognition system for Tamil, most of them are only on a small
vocabulary set. For example in [6], [7] and [8], the authors in-
vestigate various LM configurations for Tamil.

In our previous work [1], we built our baseline Tamil
LVCSR system. We aimed to address the morphological com-
plexity of Tamil by proposing a Dictionary Unit Merging Algo-
rithm (DUMA), a word segmentation algorithm which gener-
ated merged syllable units (DUMA units). We showed the per-
formance of Tamil LVCSR at three levels - word, syllable and
DUMA unit. The SyllER of the three systems were reported as
29.30%, 34.16% and 24.87% respectively. Due to a mistake,
we reported 24.87% SyllER with DUMA in [1]. After correct-
ing it, we obtained a SyllER of 28.08% which is still better than
the syllable-based system by 17.79% relative. After removing
a noisy utterance from the database, the SyllER of the word-
based baseline was found to be 27.73%. However, Wilcoxon
signed-rank tests at the level of 0.05 (wilc-0.05) show that the

superiority of the word-based system over DUMA is not sta-
tistically significant. Therefore our motivation was to enhance
DUMA. Due to the close performance of word- and DUMA-
based systems, we combined both these approaches in hybrid
systems i.e. combining words and morphemes in LMs.

In this paper, we present our investigations on Tamil
LVCSR at different levels: pronunciation dictionary, language
modeling and front-end. First, we explore the correlation be-
tween the amount of training data and the performance of G2P
conversion for Tamil. Next, experiments on various morpheme
level LMs for Tamil are conducted which include a comparison
between our approach - DUMA and Morfessor [9] and experi-
ments on a hybrid system using word and morpheme LMs. Fi-
nally, we apply the multilingual bottle-neck features [10, 11] to
Tamil LVCSR.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe our speech and language resources. Our G2P
experiments are described in Section 3. Section 4 presents our
investigations on morpheme level and hybrid ASR systems for
Tamil. In section 5, we discuss our experiments using Multilin-
gual bottleneck features. Section 6 concludes our work with an
outlook into future work.

2. Tamil Language Resources
2.1. Data Corpus

The Tamil text corpus was crawled using RLAT [12] from pop-
ular Tamil news websites and normalized. The websites were
crawled with a link depth of 10, i.e. the crawler went recursively
10 levels deep from each level after the level was completed
crawled. Table 1 gives the list of websites crawled. The col-
lected text was cleaned and normalized using the following four
steps (1) Remove all HTML-Tags and codes, (2) Remove spe-
cial characters, non-Tamil characters and empty lines, (3) Con-
vert numbers, dates, time and common abbreviations to their
equivalent text form, and (4) Remove leading and trailing white
spaces and write each sentence on a separate line.

Table 1: List of crawled websites

Website URL Link depth
1 www.dinamalar.com 10
2 www.dinakaran.com 10
3 www.dinamani.com 10

2.2. Speech Corpus

The speech data for our Tamil recognizer was collected in Tamil
Nadu, India in two stages: In the first stage, 68 speakers were
each asked to read several lines (ranging between 30 and 300)
from Thirukkural, a Tamil literary classic which contains 1,330
verses and is considered to be one of the most important works



in Tamil. This accrued to almost 17 hours of speech data. From
the data collected in the first stage, data from 5 speakers which
added up to 1 hour was separated and designated as the devel-
opment set. In the second stage, additional speakers were asked
to read newspaper prompts collected from the newspapers men-
tioned in Table 1. A new set of 29 speakers participated in this
exercise. The data from this stage accrues to 1 hour and con-
stitutes the test set. All speech data was recorded with a close-
speaking microphone and in quiet environmental conditions. A
sampling rate of 16 kHz with a resolution of 16 bits was used for
the data which was stored in PCM encoding. Table 2 describes
our speech corpus.

Table 2: Speech corpus description

Set #Speakers #Utterances DurationMale Female
Training 30 33 1012 15h 50min
Development 2 3 51 1hr 4min
Test 14 15 369 1hr 0min
Total 46 51 1433 17hr 54min

3. Grapheme-to-Phoneme mapping
Tamil language consists of 12 vowels and 18 consonants. Each
of the 18 consonants individually combine with the vowels
to form 216 additional graphemes. There exists a special
grapheme named ”aytam” which is neither a consonant nor
a vowel. Unfortunately, the G2P conversion task is not very
straightforward in the case of Tamil, for the following two rea-
sons: (1) Confusion between allophones p (b), t (d), th (dh),
k (g) and c (j) (s) which are very difficult to solve with lin-
guistic rules and (2) the transcription of borrowed words which
do not have a standard pronunciation. While most Indian lan-
guages are phonetic in nature i.e. they possess a one-to-one
correspondence between orthography and pronunciation, Tamil
script, although phonetic in nature has a lot of exceptions. Pre-
vious work on G2P conversion for Tamil was done in [13] and
[14] where the authors explored rule-based and Decision Tree
Learning-based approaches.

In [15], the authors conclude that Sequitur [16] and
Phonetisaurus [17, 18] perform better than the other existing
G2P techniques for LVCSR tasks. For Tamil, both tools give
very similar Phoneme Error Rates (PER), however, the training
time taken by Phonetisaurus (minutes) was much lower than
that taken by Sequitur (hours). Thus, we report the results ob-
tained from Phonetisaurus and explain the algorithm used.

In Phonetisaurus, weighted finite-state transducers are used
for decoding as a representation of a graphone-based n-gram
LM trained on data aligned by an advanced M : M alignment
algorithm [17]. The n-gram can be trained using any standard
LM Toolkit in which Kneser-Ney discounting with interpola-
tion is used for smoothing. Decoding is done using OpenFST
[19].

From a manually transcribed lexicon of 35k words, we se-
lect incremental amounts of data to investigate the correlation
between the training size and the phoneme accuracy. The n-
gram size of all our models is N = 7. For testing the models,
we used a test lexicon with 5k words which was handcrafted
by native speakers. Our best G2P model achieves a phoneme
accuracy of 99.05% on the test lexicon. This model is used to
generate the pronunciation lexicons for our experiments. Figure
1 correlates the training data size and the phoneme accuracy.

It should be noted that the subsets of the 35k train lexicon
are selected automatically by a program if all the phonemes oc-

cur a minimum number of times in the subset. The 10k subset
performs worse than the 3k subset since the program selects
a poor set of word-pronunciation pairs. From Figure 1 it can
be seen that for the G2P performance to cross the 98% mark,
close to 5000 carefully selected word-pronunciation pairs are
required.

Figure 1: Training size vs Accuracy

4. Morpheme-based LMs for Tamil
4.1. Introduction

Tamil is a member of the Dravidian Language family which is
one of the morphologically rich families of languages compa-
rable to Finno-Urgic languages and Turkish. This morpholog-
ical complexity often causes data sparsity issues and results in
high OOV-rates and LM perplexities. A traditional approach to
overcome this problem is to use a very large vocabulary. Us-
ing a very large search vocabulary also leads to high OOV rates
and high resource requirements such as CPU time and memory.
Alternatively, morpheme-based LMs can be used to lower the
OOV rate and decrease the perplexity, reduce the resource re-
quirements and achieve better accuracy. Normally, morpheme
generation is carried out by applying morphological decomposi-
tion to words based on supervised or unsupervised approaches.
Supervised approaches like in [20] use linguistic knowledge in
the form of a set of manual rules to perform Tamil word de-
composition. Other supervised methods make use of lexical
and syntactic knowledge like in [21, 22, 23]. The disadvan-
tage of the supervised techniques is the need of expert knowl-
edge and hours of work. On the other hand, the unsupervised
approaches are statistical data driven approaches like the algo-
rithm in [1] which is based on the frequency of pronunciation
transitions and [9], where the authors present an unsupervised
methods based on Minimum Description Length (MDL). The
unsupervised approaches are language independent and require
no prior linguistic knowledge.

There have been a few previous works on the effect of
morpheme-based LMs for Tamil. [7] explores the effect of var-
ious LMs for Tamil, concluding that morpheme-based LMs are
better than the others. However, an supervised morphological
analyzer [14] was used in the experiments on a small vocab-
ulary. In [8], a morpheme-based LM based on [25] has been
built and is found to be better than the word-based LM. How-
ever, hybrid systems - combining words and morphemes have
not yet been tried for Tamil. In this section we examine various
unsupervised morpheme level and hybrid LMs for Tamil.

4.2. DUMA-derived morpheme LM

In our previous work [1], better than the algorithm proposed in
[26], a data-driven, statistical approach that requires no a-priori



linguistic knowledge called DUMA was proposed. It aims to
determine appropriate dictionary units for Tamil, to overcome
the high OOV rate and LM perplexity due to the rich morphol-
ogy of Tamil.

The inputs to the algorithm are a pronunciation dictionary,
the LM training text and a vowel list. The vowel list is the only
linguistic knowledge required by the algorithm. Initially, we
segment the entire text into syllables using the syllabification
algorithm stated in [4]. We also include word boundary infor-
mation in the syllabified text i.e. we prepend a ’-’ to every sylla-
ble that does not occur at the start of a word. Then we obtain all
possible syllable pairs from the syllabified text. Each possible
pair is then looked up in the dictionary and the pronunciation of
the vowel-vowel transition is retrieved.

The merging algorithm is governed by the following itera-
tive steps:

1. First, we compute a hash table that maps the vowel-
vowel transition, the corresponding syllable pair to the
frequency of the pair in the LM text.

2. For each vowel-vowel transition in the hash table, we
place the most frequent syllable pair into a merge-list.

3. We merge all the pairs in merge-list in the segmented
corpus.

We only merge pairs that occur within a word, and chose
not to merge pairs across word boundaries since Tamil has a
fixed word boundary. We use the merge-list obtained after step
2 of the unit merging algorithm to merge both the training and
test transcripts. Figure 2 shows the various stages of DUMA.

Figure 2: Various stages of DUMA

4.3. Morfessor-derived morpheme LM

A very popular unsupervised morphology learning technique is
the Morfessor [9]. It uses the MAP (Maximum a Posteriori)
algorithm to find the most likely morpheme boundaries. Each
word in the lexicon of the corpus is recursively broken down
into all possible segmentations. Given the lexicon of morphs
(M), lexicon of words (W), each of which has n segments, µ is
a morph with a frequency function fµ and a length function sµ.
The model is defined as below:

P (corpus |M ) =
W∏
j=1

nj∏
k=1

P
(
µjk
)

(1)

P (lexicon) =M ! ∗ P (fu1 . . . fuM ) ∗ P (su1 . . . suM ) (2)

P (M |corpus ) = P (corpus |M ) ∗ P (lexicon) (3)

In our experiments, we learn morphology based on word
types rather than tokens since it has been seen in [9] that lin-
guistically best segmentation is obtained by learning from word
types. The resulting segmentation obtained is recursively used

to segment the lexicon thereby performing an Expectation-
Maximization (EM) using the Viterbi algorithm on the morph
segmentations. It was noted that perplexity of the LM built us-
ing the generated morphemes converged after 11 iterations of
EM in our case. Morfessor generates unrealistic segments on
unicode text since it segments randomly at any length irrespec-
tive of the letter present. This sometimes segments compound
Tamil unicode characters into characters which are not defined
in Tamil. A program is made to sweep through all the segmen-
tations to rectify this problem and delete spurious segments. We
use SRILM Toolkit [27] for building all our LMs.

Table 3: DUMA vs. Morfessor

System LM
Order PPL OOV rate

(%)
SyllER
(%)

Word baseline 3 5,780 4.9 27.73

DUMA 3 14,344 1.5 28.08
4 11,521 1.5 27.65

Morfessor 3 10,377 0.8 28.49
4 9,175 0.8 28.66

For a fair comparison across all models, the perplexity and
OOV rates are normalized by the number of words present as in
[21] and [22]:

PPL∗ = (PP )Nd/Norg (4)

OOVnorm = OOV ∗Nd/Norg (5)

where PPL∗ and OOVnorm denote the normalized perplexity
and OOV rate, Nd is the number of morpheme tokens in the
decomposed data, and Norg is the number of original words.

The lower perplexity of the word-based system is due to
its high OOV rate which ignores many rare words from the
perplexity calculations. The shrinkage of the LM span in the
morpheme based LMs might contribute to their high normal-
ized perplexities. From Table 3, we see that the DUMA system
performs better than the Morfessor system (statistically signif-
icant by wilc-0.05). Morfessor produces morpheme units with
an average length of 2.41 syllables and on average 2.16 morphs
per word compared to an average length of 2.01 syllables for
DUMA units and 2.36 units per word produced by DUMA. The
production of longer and lower number of units by Morfessor
as compared to DUMA might be the reason behind its bad per-
formance.

4.4. Hybrid System: Full words + morphemes

4.4.1. Motivation

The main aim of formulating DUMA was to obtain a trade-
off between small syllable units and agglutinative word units.
However, it can be seen that DUMA also suffers from acous-
tic confusabilities due to short units. Hence, we chose not to
merge the top Nk words of the vocabulary and segment only
the remaining vocabulary. Using full words in Morpheme LMs
was found to be useful in previous experiments with Arabic [22]
and German [28]. This has the following advantages:
• It reduces the acoustic confusability caused by short

DUMA units.
• It increases the range of the acoustic and language

model.
• The presence of the top Nk words during the training is

found to help the system.

4.4.2. Experiments

We chose the word-based system and the DUMA system from
Table 3 as our baseline systems to build the hybrid system. The



word- and DUMA-based LMs have 40M and 60M tokens, 602k
and 223k types. Starting from the DUMA system, we gradually
increased the number of words that would not be segmented.
Since morphemes and words are of different lengths, their op-
timal performance may occur at different n-gram orders [9].
Hence we also experiment with 4-gram LMs in addition to 3-
gram LMs for all the morpheme-based systems. Table 4 sum-
marizes all our experimental results.

Table 4: Comparison of Hybrid Systems (WB: Word-based, DB:
DUMA-based, H: Hybrid, mrfs: morphemes, wrds: words)

Sys. #mrfs #full
wrds

OOV
rate
(%)

3-gram 4-gram

PPL SyllER
(%) PPL SyllER

(%)
WB 0k 602k 4.9 5,870 27.73 5,467 27.65
DB 223k 0k 1.5 14,344 28.08 11,521 27.65

H

221k 5k 1.5 14,240 27.74 12,024 27.70
222k 15k 1.5 16,631 27.73 14,838 27.58
219k 20k 1.5 12,008 26.55 10,861 26.76
212k 25k 1.5 11,906 26.83 10,661 26.80

The high values of the perplexities in the above table are
since they are normalized as in Eq. 4. To the DUMA baseline
(3gram) and the best hybrid system (219k #mrfs & 20k #wrds),
we add another 4.9M lines of text and build two new LMs. The
perplexity of these LMs on the test set are 12,804 and 5,966 and
the SyllER are 27.37% and 25.73%. Thus with the additional
text, the hybrid system (219k #mrfs & 20k #wrds) significantly
outperforms the DUMA baseline and is used in our bottle-neck
experiments.

5. Multilingual Bottle-neck features
In the last few years, the use of multi layer perceptron (MLP)
for feature extraction showed impressive ASR performance im-
provements. In many setups and experimental results, MLP
features proved to be of high discriminative power and very
robust against speaker and environmental variations. Hence,
in this paper we integrate these features into our Tamil ASR
system. Figure 3 shows the layout of our MLP architecture.
As input to the MLP network, we stacked 11 adjacent MFCC
feature vectors and used phones as target classes. A 5 layer
MLP was trained with a 143-1500-42-1500-81 feed-forward ar-
chitecture. In the pre-processing of the Bottle-Neck (BN) sys-
tems, the LDA transform is replaced by the first 3 layers of the
MLP using a 143-1500-42 feed-forward architecture (BN), fol-
lowed by stacking of 5 consecutive output frames. Finally, a 42-
dimensional feature vector is generated by an LDA, followed by
a covariance transform. All neural networks were trained using
ICSI QuickNet3 software [29].

Figure 3: Bottle-Neck feature

However, training an accurate MLP for a new language with
a small amount of data is not a trivial task. In [10, 11], we
showed that multilingual MLP (ML-MLP) is a good initializa-
tion for MLP training especially for a new language and there-
fore, we could train an MLP for a new languages such as Creole

and Vietnamese. Figure 4 illustrates the initialization scheme.
For the new language, we select the output from the ML-MLP
based on the IPA table and use it to intialize the MLP training.
All the weights from the ML-MLP are taken but only the output
biases from the selected targets are used.

Figure 4: Initialization for MLP training or adaptation using a
multilingual MLP

In this paper, we apply the multilingual MLP which was
trained with English, French, German, and Spanish [10, 11] to
initialize the MLP training for Tamil. Table 5 shows the frame-
wise classification accuracy of all the MLPs (one with random
initialization and the other with multilingual MLP initialization
on the cross-validation data) and the SyllER on the Tamil eval-
uation set. Using ML-MLP for initialization of MLP training,
we obtain our best performance with 21.34% SyllER on the eval
set.
Table 5: Frame accuracy on cross validation set of MLP train-
ing and SyllER on the Tamil evaluation set

Systems AccCV(%) SyllER(%)
Baseline - 25.73%
Random-init 69.85 25.03%
Multilingual-init 76.1 21.34%

6. Conclusions and Future Work
In this paper, we present our investigation on Tamil LVCSR
at different levels: front-end, dictionary and language model.
Firstly, we explored the correlation between the amount of
training data and the performance of the G2P conversion for
Tamil. Secondly, we investigated various morpheme level
systems for Tamil: we showed that our DUMA system slightly
outperforms the Morfessor system. However, a hybrid system
with morphemes extracted from DUMA and unsegmented
top 20k words produced the most improvement of about
4% and 5% relative SyllER compared to our word-based
and DUMA-based baseline systems. Finally, we integrated
multilingual bottle-neck features to Tamil LVCSR and obtained
an additional 18% relative improvement in SyllER. The best
system obtained 21.34% SyllER on the Tamil evaluation set.
From previous work, it can be seen that a comprehensive
LVCSR system for Tamil has not yet been developed. We be-
lieve that our work is among the first to build large vocabulary
systems for Tamil. In the future, we would like to investigate
the effect of using high order n-grams in our approaches. We
would like to build Factored Language Models (FLMs) [30],
which were found to be useful for other morphologically rich
languages like Arabic, for Tamil. The use of graphones as units
in the Hybrid LMs could also be promising.
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