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Abstract
Recently, the idea of using BCIs in Augmented Reality set-
tings to operate systems has emerged. One problem of
such head-mounted displays is the distraction caused by an
unavoidable display of control elements even when focused
on internal thoughts. In this project, we reduced this distrac-
tion by including information about the current attentional
state. An multimodal smart-home environment was altered
to adapt to the user’s state of attention. The system only
responded if the attentional orientation was classified as
"external". The classification was based on multimodal EEG
and eye tracking data. 7 users tested the attention-aware
system in comparison to the unaware system. We show
that the adaptation of the interface improved the usability of
the system. We conclude that more systems would benefit
from attention-awareness.
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Introduction
Both, Brain-Computer Interfaces (BCI) and Augmented
Reality (AR) devices, have been of growing interest to the
industrial and scientific community. While AR is a way to
merge real and virtual content in many different scenarios
and thereby offers interesting applications, BCIs allow for
a new way of communication between humans and ma-
chines. The combination of the two technologies offers the
possibility of designing an implicit, voice-free and hands-
free, adaptive user interface.
In recent years, BCIs that control a person’s environment
have found several applications - controlling robots, spellers,
smart-home environments or any other remotely control-
lable system. The advantage of combining such a system
with AR is an intuitive display and control of control ele-
ments, which makes a remote control unnecessary. How-
ever, AR devices that use a Head-Mounted Display (HMD)
face one major problem: the continuous visibility of the
screen makes distractions by the virtual content hard to
avoid. When the content does not support a task the user
is currently pursuing, it might interfere with the user’s goals
and inhibit or prolong task solving. A task in this context
can be diverse, from following or participating in a conver-
sation, over logical or mathematical reasoning, to memory
recall and planning. Depending on the task, setting, and the
controlled system itself, the possibilities of distractions vary.
In general, the sudden display or change of AR content in
times of internal attention can be very distracting. Internal
attention is defined as focus on thoughts, memories, and
problems that don’t require a sensory input. It relies on in-
ternally produced information. External attention, on the
other hand, describes a focus on information produced in
one’s surroundings (including AR).

Figure 1: Window blinds control
via AR using the SSVEP-BCI
paradigm in a room where the
menu allows for four operations:
blinds up, blinds down, blinds close
(fins), blinds open (fins) – the
operations are automatically
executed via the building’s
intelligent control system.

In this study, users control a previously published smart-
home system using AR-HMD and a BCI [13]. The user
can turn on lights or control blinds by shifting their atten-

tion to certain fields, displayed in AR. These control ele-
ments appear in the field of view, as soon as a visual real-
world marker is detected and flicker with individual frequen-
cies, producing a Steady-State Visually Evoked Potential
(SSVEP)(See Figure 1 from Putze et al. [13]). Electroen-
cephalography (EEG) and eye tracking (ET) data is then
used to classify the choices and the classification triggers
the respective operation. The system will always display the
control elements at the recognition of a marker. Thus, if a
user is wearing the device in an everyday situation, an un-
expected appearance of virtual content might disrupt other
ongoing internal, cognitive processes. Our approach in this
paper is to supply the AR application with information about
the attentional state of the user and limit the situations in
which virtual content may be displayed to times of external
attention. The real-time classification of the attentional state
will also be based on EEG and ET data and was introduced
in Vortmann et al. [18]. If this approach proves successful,
it could be transferred to a large number of AR applications
in which distraction through AR elements during times of
internally directed attention should be avoided.
Overall, we hypothesize that a restricted system behavior
based on the classified attentional state improves the us-
ability of the Smart-Home system in AR by reducing the dis-
tractions caused during times of internal attention. Explicitly,
our hypotheses are as follows: (1) During internal attention,
changes in the virtual visual field cause distraction from the
internal task. (2) A higher level of distraction decreases the
usability rating of a system. (3) An attention-aware system
will be rated better in terms of usability. Our contributions in
this paper are (1) the combination of a real-time attention
classifier with an SSVEP-based self-paced Smart-Home
system (SHS) as a realistic application for such a classi-
fier, (2) a BCI that is used both implicitly and explicitly in the
same system, (3) an attention-aware end-to-end system,



and (4) the evaluation of the system for usability and perfor-
mance.

Related Work

Figure 2: The setup of the EEG
cap, the eye tracker, and the
HoloLens on the participant

BCI paradigms in AR without attention-awareness have
been investigated frequently. It was shown by Takano et
al. [16] that the classification of targets in AR was not worse
than on a computer screen. Exemplary control systems in
AR were tested in Wang et al. [19] (control the flight of a
drone) or Si-Mohammed et al. [15] (movement of a robotic
platform). Kosmyna et al. [8] assessed the feasibility of BCI
control in a realistic smart home environment with healthy
and disabled participants. Both Saboor at al. [14] and Putze
et al. [13] implemented SSVEP-based Smart-home control
systems. The latter will be used in this paper.
Several studies have shown that it is possible to differen-
tiate internal from external attention based on EEG or ET.
Benedeck et al. were able to differentiate between the two
by using the frequency power spectra [1] or in eye-tracking
data [2]. The combination of EEG and eye-tracking fea-
tures has been proven to work well [11, 4, 6, 7]. In Putze
et al. [12], it was shown that EEG data could be classified
to discriminate between internal and external attention pro-
cesses on a single-trial basis. Vortmann et al. [17] showed
that internal/external discrimination with EEG-data only was
feasible in AR. A real-time attention classifier was first intro-
duced by Vortmann et al. [18]. It will be used in this work.
The problem of distraction in such an AR setting was ad-
dressed in recent studies. To avoid distraction by visual
clutter and masking, McNamara et al. [9] used gaze posi-
tion to place labels in a mobile AR setting. Evain et al. [5]
assessed the usability of an SSVEP-BCI during times of
distraction and concluded that even with a higher mental
workload, operating the BCI was possible.

The System
The Attention-Aware Smart-Home System (SHS) is a com-
bination of two systems that were tested and evaluated sep-
arately before. One is an SHS realized in an AR setting that
utilizes SSVEP signals and ET data for selection. The other
is a real-time attention classification system that also uses
EEG and ET data to model internal and external attention.
Both systems and preceding studies will be summarized in
this section.

The SSVEP-Based SHS in AR that was used for improve-
ment and comparison in this paper, was described in Putze
et al. [13]. They used an HMD-AR device to present four
context-dependent control elements that flicker in differ-
ent frequencies (4 Hz, 6 Hz, 10 Hz, and 15 Hz). The flicker
frequencies are different for each control element and in-
duce an SSVEP in the brain corresponding to the attended
target. The frequency-dependent response in the brain is
measured by the EEG system, recorded at three occip-
ital electrodes (in this paper: PO7, Oz, PO8). The EEG
data was processed with Canonical Correlation Analysis
(CCA) to calculate a correlation coefficient for each flick-
ering frequency. The frequency with the highest CCA co-
efficient was returned along with the coefficient. Addition-
ally, ET data was recorded and evaluated for proximity to
the expected location of the stimuli. For classification, they
employed a nearest neighbor approach (lowest euclidean
distance to targets) for each gaze point and target. The tar-
get with the most gaze points assigned to it was returned
as classification result, along with the sample size of gaze
points and the confidence (relative frequency of selected
target). The combination of both modalities proved to be
most accurate in terms of classification rates. As a result,
they achieved an average classification accuracy of 89.3%
(chance level of the majority class: 33.3%). The System
was rated by the participants on a System Usability Score



(SUS) scale and reached an average of almost 75, which is
considered good.
The Real-Time Attention Classifier described in Vort-
mann at al. [18] was used in this paper to add the attention-
awareness to the control system. During their user study,
the participants performed 6 different tasks of which 3 were
considered as triggering internal and 3 were considered
as triggering external attention. The tasks were displayed
on a computer screen. The classifier takes EEG and ET
data to generate features (i.e. mean frequency-band power,
number of saccades). As the classification model, a linear-
discriminant analysis with least-squares solver and shrink-
age is used and trained on the training data in a 10-fold
cross-validation. Vortmann et al. [18] reported that the at-
tention states for 10 users were classified with an average
accuracy of 72.73%. Furthermore, this system was able
to classify the attention of one participant in the real-time-
mode with an accuracy of 60.87%.

EEG Details:

• Electrode Positions:
(10/20-System) CZ,
FP2, F3, FZ, F4, FT7,
C3, FP1, C4, FT8, P3,
PZ, P4, PO7, PO8, OZ

• Sampling Rate: 500hz

• Impedance: < 20kΩ

Exemplary tasks:

Internal Tasks:
1. Think of as many

words starting with "m"
as possible.

2. Think back in detail
what clothes you were
wearing two days ago

3. Solve: 12+6-14+23

External Tasks:
1. Concentrate on the

chair in the corner.
2. Try to memorize all the

details of the marker
on the wall.

3. Look at the book on
the table and count
the occurrences of the
letter "m"

The integration of the two systems into one attention-aware
BCI was mainly realized by adjusting the communication
between the components via the LSL. The Real-Time Clas-
sification system was used in the online mode, where chunks
of 1.5 seconds were classified on shifting time windows
(shift of 10%). The classifier had to be trained on sepa-
rate trails first, which will be explained in Section “Experi-
ment Session”. The α (alpha, 8-14hz), β (beta, 14-30hz), θ
(theta, 4-8hz) and γ (gamma, 30-45hz) -bands were used
for feature extraction. Due to the smaller amount of training
data, the cross-validation was reduced to a 5-fold cross-
validation and only 16 electrodes were recorded. The rest
of the setting and processing pipeline was kept in accor-
dance with the paper by Vortmann et al. [18].
For the SHS, we altered the application so that it would lis-
ten to the classification of internal and external attention
and only trigger the appearance of the virtual control fields

if the real-world marker was visible, and the last classifica-
tion of the attentional state was "external".

The hardware of the system consists of an analysis com-
puter running windows, a Microsoft HoloLens with a com-
patible binocular eye tracker from pupil labs, a wireless
g.tec Nautilus headset with 16 active electrodes as EEG
measuring device, and a smart home environment with con-
trol over lights and blinds. For details on the EEG measure-
ment, see Sidebar "EEG Details".
The application for the HoloLens was implemented in Unity
3D 2018.2.14, using the Vuforia and HoloToolkit plugins. All
additional scripts were written in Python 3.7. The compo-
nents communicate via the Lab Streaming Layer middle-
ware (LSL)1 by listening to streams or feeding them with
information. The eye tracker calibration happened at the
start of the application directly on the AR-HMD using the
HMD-eyes component provided by Pupil Labs2.

The User Study
A user study was performed to test the performance and
usability of the system. The sessions took place in an office
supporting the integration of the system to control lights and
blinds. The room was not shielded to ensure that results
would be reproducible in an uncontrolled setting. During
the testing, only the experimenter and the participant were
present in the room.

Participants
Participants were recruited from a pool of students. Seven
healthy participants (mean age 23.4 ± 2.3; four females)
participated in the experiment. All participants had normal
or corrected to normal vision. All participants but one were
right-handed, and all but two participants had previously

1https://github.com/sccn/labstreaminglayer
2https://github.com/pupil-labs/hmd-eyes



used an Augmented or Virtual Reality Device. One of the
participants regularly used a smart home environment. We
did not restrict the participation in the experiment except
for participants with photosensitive epilepsy (due to high
risk while experimenting with SSVEP). Participants were
asked to wear contact lenses instead of glasses because
of the compatibility with the eye tracker. The local ethics
committee approved the study and written informed consent
was obtained from the participants before the conductance
of the measurements. All the data was fully anonymized.

No. SUS-O SUS-N
1 65 80
2 75 75
3 70 75
4 75 80
5 70 77,5
6 65 70
7 72.5 77.5
m. 70.36 76.43
std 4.19 3.49

No. MWQ DIS-O DIS-N
1 22 17 11
2 13 13 10
3 15 15 10
4 15 15 12
5 10 12 10
6 18 16 13
7 17 14 12
m. 15.71 14.57 11.14
std 3.82 1.72 1.21

Table 1: The questionnaire scores
for each participant, mean and
standard derivation. MWQ = Mind
Wandering Questionnaire, SUS-O
= System Usability Score of the
attention-unaware system, SUS-N
= System Usability Score of the
attention-aware system, DIS-O =
Distraction Score of the
attention-unaware system, DIS-N =
Distraction score of the
attention-aware system

Experiment Session
On average, the participants spent 70 minutes in our lab.
After a verbal introduction and written information about
the experiment and the recorded data the participants gave
written consent and filled out all questionnaires (see Sec-
tion “Questionnaires and Performance Assessment”). The
same experimenter introduced all participants and guided
them through the experiment. After the setup, the EEG sys-
tem was calibrated and the eye tracker adjusted. A picture
of the complete setup can be seen in Figure 2.
When all questions of the participants were answered, the
application on the HoloLens started with the calibration of
the eye tracker. Immediately afterward, the training of the
attention classifier started. The experimenter paced the
trials individually. For each condition ("internal" and "exter-
nal"), 10 tasks were posed in random order. The internal
task included memory, imagination and mental arithmetic,
similar to the tasks used in Vortmann et al. [18]. The ex-
ternal tasks instead made use of the surroundings in the
office. This aimed at creating an application related context.
The tasks were directed at the visual real-world markers or
office objects (See Sidebar "Exemplary Tasks").

After the training of the classifier was completed, each sys-
tem (attention-aware and -unaware) was tested for approx.

5 minutes. The order in which the systems were tested
was randomized per participant. During the 5 minutes, the
participants were asked to perform different internal tasks
(same concept as in the training) or control the SHS by fo-
cusing their attention on a visual marker and choosing the
appropriate field of the SSVEP control elements. 10 internal
trials and 5 external trails were completed by every par-
ticipant. After each session, questionnaires rating the last
used system were filled out by the participants. The second
set of these questionnaires ended the experiment session
and participants were asked for comments.

Questionnaires and Performance Assessment
Besides a demographic questionnaire in the beginning, all
participants filled out the Mind Wandering Questionnaire
[10] asking to rate their frequency of certain mind wander-
ing related scenarios (Likert-scale). The higher the score,
the more likely is the participant to start mind wandering.
After each test session, two questionnaires were filled out
by the participants: one asking about the distraction dur-
ing the internal tasks (in analogy to the questions from the
mind wandering questionnaire) and the other one rating the
usability of the system in general on the System Usability
Score (SUS) by [3].
To assess the performance of the system, the average clas-
sification accuracy of the 10-fold cross-validation was noted
down and compared. The number of errors made by the
system during the tasks was noted down by the experi-
menter. An error is a wrong appearance of control elements
during the internal tasks and missing control elements dur-
ing external tasks.

Results
The data of each participant was analyzed for significant
differences and correlation. We used an alpha level of .05
for all statistical tests.



Table 1 reports the results of the questionnaires for each
participant. Two Wilcoxon Signed-Ranks tests were con-
ducted to compare the attention-aware with the attention-
unaware system. There was a significant difference in the
SUS score of the attention-unaware (M = 70.36, SD =
4.19) and the attention-aware system (M = 76.43, SD =
3.49), with n = 6 (one participant rated the systems equally
and was not considered) and Tcrit = 0 ≤ T− = 0. There
was also a significant difference in the distraction rating for
the old attention-unaware (M = 14.57, SD = 1.72) and the
new attention-aware system (M = 11.14, SD = 1.21), with
n = 7 and Tcrit = 2 ≤ T+ = 0.
The score of the mind wandering questionnaire correlated
with the average distraction score for the old and new sys-
tem with r = 0.86.

No. accuracy error
1 72.8 33.34%
2 70.2 53.34%
3 66.6 60.00%
4 59.7 66.67%
5 60.3 53.33%
6 60.3 60.00%
7 70.0 40.00%
m. 65.70 52.38%
std 5.54 11.82%

Table 2: Performance results of the
attention-aware system for each
participant. The accuracy is the
average training accuracy of the
fold during the 5-fold
cross-validation. The reported error
is the percentage of internal trails
in which at one point the control
fields mistakenly appeared.

The performance of the new system was evaluated by train-
ing accuracy and mistakes during realistic usage. For a
detailed report on the performance of the attention-unaware
system see Putze et al. [13]. The results for each partic-
ipant (see Table 2) were analyzed for correlation. During
the external trails, the response of the system was some-
times delayed but displayed the control elements for all par-
ticipants in all trials and was thus considered as having a
0%-mistake rate for external trials. The training accuracy
and the mistakes made during usage were correlated nega-
tively, r = −0.79.

Discussion
In this paper, we combined an SSVEP-based SHS with a
real-time attention classifier to reduce distraction during
times of internal attention. We were able to implement an
end-to-end system for a user study. It proved a significant
decrease of distraction for internal tasks while wearing the
attention-aware SHS compared to the attention-unaware
system. We also found a significant difference in usability

ratings between the two systems, with better usability of the
attention-aware system.
Participants that achieved higher scores on the MWQ also
rated the distraction of the two systems higher. Lower train-
ing accuracies of the attention classifier resulted in more
mistakenly presented control elements during internal tasks.
During external tasks, longer reaction times of the system
were reported by the participants but not quantitatively as-
sessed.
The results in this paper were comparable to the results in
the papers by Putze et al. [13] and by Vortmann et al. [18].
All additional questionnaire results were as expected.
Despite the sometimes high rate of mistakes in the internal
condition of the attention-aware system it already improved
the usability rating and decreased the perceived distraction
by the users. This allows for an optimistic outlook that an
improved real-time attention classification system would
highly improve the usability of BCI-AR-control systems.
More work has to be put into the comfort of the combination
of HMD-AR devices, eye tracker and EEG systems. Also,
the reduction or elimination of the training phase is desir-
able. The goal should be a self-paced, attention-aware,
training-free system with a comfortable setup and short cali-
bration times.
The described approach can be applied to several AR use
cases, such as tutoring or training systems, where the user
switches between taking in information and mentally pro-
cessing it. Our future work will focus on improving the clas-
sification accuracy while reducing the necessary training or
possibly even eliminating it. We aim at designing a person-
independent attention classifier that uses very short time
windows for classification. We will try to optimize task trans-
fer and assess other features for the chosen modalities.
Overall, we conclude that more systems should consider
adapting the system behavior based on the attentional state
on the user.
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