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Abstract. In this paper, we investigate the adaptation of language mod-
eling for conversational Mandarin-English Code-Switching (CS) speech
and its effect on speech recognition performance. First, we investigate the
prediction of code switches based on textual features with focus on Part-
of-Speech (POS) tags. We show that the switching attitude is speaker
dependent and utilize this finding to cluster the training speakers into
classes with similar switching attitude. Second, we apply recurrent neural
network language models which integrate the POS information into the
input layer and factorize the output layer into languages for modeling
CS. Furthermore, we adapt the background N-Gram and RNN language
model to the different Code-Switching attitudes of the speaker clusters
which lead to significant reductions in terms of perplexity. Finally, using
these adapted language models we rerun the speech recognition system
for each speaker and achieve improvements in terms of mixed error rate.

Keywords: multilingual speech processing, code switch attitude, lan-
guage model adaptation

1 Introduction

Code-Switching (CS) speech is defined as speech that contains more than one lan-
guage (’code’). It is a common phenomenon in multilingual communities where
people of different cultures and language background communicate with each
other [2]. The switch between languages can happen between or within an ut-
terance. In this paper, we show that the decision whether and when a speaker
changes the language is rather individual (’Code-Switching attitude’).
For the automated processing of spoken communication in these scenarios, a
speech recognition system must be able to handle code switches. However, the
components of speech recognition systems are usually trained on monolingual
data, particulary when there is a lack of multilingual training data. This is why
the CS task appears to be difficult to solve.
While there have been promising research results in the area of acoustic model-
ing to handle Code-Switching, only few approaches so far address this challenge
in the language model. Recently, it has been shown that recurrent neural net-
work language models (RNNLMs) improve perplexity and error rates in speech
recognition systems in comparison to traditional N-Gram approaches [9, 10, 15].
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One reason for that is their ability to handle longer contexts. Furthermore, the
integration of additional features as input is rather straight-forward due to their
structure. Recently, we proposed an extended structure of recurrent neural net-
works in order to predict CS points. In this paper, we extend this work by show-
ing that Code-Switching can be regarded as a speaker dependent phenomenon.
Hence, it is possible to cluster speakers with similar Code-Switching attitudes
to obtain more specific models. Our experimental results demonstrate that this
clustering leads to significant improvements in terms of perplexity for each test
speaker and that these improvements also transform into error rate reductions.
Figure 1 illustrates our adaptation process.
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Fig. 1. Overview: language model adaptation to Code-Switching attitudes

The remainder of the paper is organized as follows: Section 2 reports on previous
research in the area of Code-Switching, text clustering and language modeling
using recurrent neural networks. Section 3 describes the SEAME corpus and
analyzes it with focus on Part-of-speech tags triggering CS events. In section 4,
we present how speakers can be clustered using the results of our analysis. Fur-
thermore, we describe the adaptation of N-Gram and recurrent neural network
language modeling for each Code-Switching attitude. In section 5, we present
our experiments and results. The study is concluded in section 6.

2 Related Work

For this work, three different topics are investigated: 1) analysis of CS points
and their integration into language models, 2) text clustering using similarity
measures and 3) recurrent neural network language modeling and adaptation to
more specific data. This section gives a short overview of prior work in these
fields.
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2.1 The Code-Switching Phenomenon

In [4, 12, 13], it is observed that code switches occur at positions in an utter-
ance where they do not violate the syntactical rules of the involved languages.
On the one hand, Code-Switching can be regarded as a speaker dependent phe-
nomenon [3]. On the other hand, particular CS patterns are shared across speak-
ers [14]. It is shown that speakers mainly switch to another language for nouns
and object noun phrases. Therefore, the most frequent switches are between de-
terminers and nouns and between verb phrases and object noun phrases.
In [16], different machine learning algorithms (for instance the Naive Bayes Clas-
sifier) trained on textual features are used to predict CS points. As features, word
form, language identity, Part-of-Speech tags and the position of the word relative
to the phrase are used. [5] compares four different kinds of N-Gram language mo-
dels to predict Code-Switching. It is discovered that a class-based model which
clusters all foreign words into their POS classes achieves the best performance.
In [1], we show that the integration of POS tags into a neural network, which pre-
dicts the next language as well as the next word, leads to significant reductions
in terms of perplexity.

2.2 Clustering Textual Documents

There are different text clustering techniques, such as hierarchical clustering
(bottom-up or top-down) or k-means. While hierarchical clustering often pro-
vides better results, its time complexity is quadratic. On the other hand, k-means
has a linear time complexity. Each technique requires a distance or similarity
measure. The most common measure is the cosine measure [17].

2.3 Recurrent Neural Networks and their Adaptation

In the last years, neural networks have been used for a variety of tasks. [9] intro-
duces a refined form of neural networks for the task of language modeling. The
so-called recurrent neural networks are able to handle long-term contexts since
the input vector does not only contain the current word but also the previous
output from the neurons in the hidden layer. It is shown that these networks
outperform traditional language models, such as N-Grams which only contain
very limited histories. In [10], the network is extended by factorizing the out-
put layer into classes to accelerate the training and testing processes. Recently,
further information has been added to neural networks. [15] augments the input
layer to model features, such as topic information or Part-of-Speech tags. In [6],
it is shown that adaptation of Recurrent Neural Network Language Models in
form of one-iteration retraining leads to improvements in the word error rate
when the adapted models are applied for rescoring.

3 Code-Switching Prediction Using Part-Of-Speech

This section describes the SEAME data corpus and the analyses which we per-
formed on the data: 1) A speaker independent analysis in which we compute
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the CS rate after each Part-of-speech tag over all speakers and 2) A speaker
dependent analysis in which the CS rate per speaker is calculated.

3.1 SEAME Corpus

SEAME (South East Asia Mandarin-English) is a conversational Mandarin-
English Code-Switching speech corpus recorded from Singaporean and Malaysian
speakers, created and collected by [7]. The corpus was used for the research
project ’Code-Switch’, jointly performed by Nanyang Technological University
(NTU) and Karlsruhe Institute of Technology (KIT). The recordings consist of
spontanously spoken interviews and conversations of about 63 hours of audio
data. For this task, all hesitations are deleted and the transcribed words are
divided into four categories: English words, Mandarin words, particles (Singa-
porean and Malaysian discourse particles) and others (other languages). These
categories are used as language information in our neural networks. The aver-
age number of code switches between Mandarin and English is 2.6 per utterance.
The duration of monolingual segments is very short: More than 82% English and
73% Mandarin segments last less than 1 second with an average duration of En-
glish and Mandarin segments of only 0.67 seconds and 0.81 seconds respectively.
In total, the corpus contains 9,210 unique English and 7,471 unique Mandarin
vocabulary words. The corpus is divided into three disjoint sets (training, de-
velopment and test set). The data is assigned to them based on several criteria
(gender, speaking style, ratio of Singaporean and Malaysian speakers, ratio of
the four categories, and the duration in each set). Table 1 lists the statistics of
the SEAME corpus in these sets.

Table 1. Statistics of the SEAME corpus

Train set Dev set Eval set

# Speakers 139 8 8
Duration(hours) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

3.2 Assigning POS Tags to Code-Switching Data

To be able to assign Part-of-Speech tags to our bilingual text corpus, we use
two different taggers: On the one hand, the Stanford log-linear POS tagger for
Mandarin and on the other hand, the Stanford log-linear POS tagger for English
[19, 20]. The tags are derived from the Penn Treebank POS tag set for Mandarin
and English [8, 22]. First, we determine Mandarin as matrix language (the main
language of an utterance) and English as embedded language. If three or more
words of the embedded language are detected, they are passed to the English
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tagger. The rest of the text is passed to the Chinese tagger, even if it contains
foreign words. The idea is to provide the tagger as much context as possible.
However, most English words in the Mandarin segments are falsely tagged as
nouns by the Chinese tagger. To avoid subsequent errors in the determination
of trigger POS tags, we add a postprocessing step to the tagging process: We
select all foreign words in the Mandarin segments and pass them to the English
tagger in order to replace the wrong tags with the correct ones.

3.3 Speaker Independent Analysis

After having tagged the CS text, we select those tags that possibly predict CS
points. The results are shown in table 2. First, we consider only those tags that
appear in front of a CS point from Mandarin to English. Second, we investigate
the tags predicting a CS point from English to Mandarin. In each case, only those
tags are counted that occur more than 250 times in the text. Table 2 shows that
CS points are most often triggered by determiners in Mandarin and by verbs
and nouns in English. This seems reasonable since it is possible that a Mandarin
speaker switches for the noun to English and afterwards back to Mandarin. It
also corresponds to previous investigations as described in section 2.

Table 2. Mandarin and English POS that trigger a CS point

Tag meaning frequency CS-rate

DT determiner 11276 40.44%
DEG associative 的 4395 36.91%
MSP other particle 507 32-74%
VC 是 6183 25.85%
DEC 的 in a relative-clause 5763 23.86%

NN noun 49060 49.07%
NNS noun (plural) 4613 40.82%
RP particle 330 36.06%
RB adverb 21096 31.84%
JJ adjective 10856 26.48%

3.4 Speaker Dependent Analysis

The previous analysis detects CS rates up to less than 50%. Thus, the triggering
may not be reliable. A possible reason is that one speaker switches often after a
specific tag while other speakers do not. Hence, a speaker dependent analysis is
performed. The CS rate for each tag is computed for each speaker. Then, mini-
mal, maximal and mean values and standard deviations are calculated. Indeed,
the spread between minimal and maximal values is quite high for most of the
tags. Figure 2 shows the distribution of the speaker dependent CS rates for all
tags that appear more than 250 times in the text.
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Fig. 2. Distribution of speaker dependent CS rates

To sum up, whether a Part-of-speech tag triggers a CS event is rather speaker de-
pendent. This corresponds to the previous investigations described in section 2.
Hence, a model that includes all individual deviations cannot be very precise.

4 Code-Switching Attitude Dependent Language
Modeling

As shown in section 3, Code-Switching attitude is speaker dependent. Hence, we
perform a clustering of the manual transcriptions of all speakers of our training
data into K different groups to describe different Code-Switching attitudes. After
that, we are able to adapt our language model to each class. Thus, we obtain
K different language models that model Code-Switching more precisely and,
therefore, achieve better recognition results.

4.1 Text Clustering

We apply the k-means algorithm to cluster the training transcriptions. As sim-
ilarity measure, we chose the cosine distance because it was applied succesfully
to cluster documents in the past. The following equation shows the computation
of the cosine distance. d1 denotes a vector representing document 1 and d2 a
vector for document 2.

Dist(d1, d2) = (d1.d2)/(||d1|| · ||d2||) (1)

For the Code-Switching modeling, we define the document vectors d as follows:

d = [fcs(POS1)/f(POS1), ..., fcs(POSn)/f(POSn)] (2)

fcs(POSi) defines the number of switches after the Part-of-Speech tag i in the
given document while f(POSi) refers to the number of all occurences of the
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tag. After the clustering process converges (when there are no changes in the
clusters), we use the mean vector of each cluster as representant.
Figure 3 shows for the example of three classes that clustering helps to decrease
the spread of the Code-Switching attitudes. There are still tags for which the
clustered speakers show different attitudes but there are also tags for which their
attitude is quite similar. For example, the spread of the English tag ’NN’ (noun)
is discriminated into upper and lower values by the classes.
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(b) distribution in class 2
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Fig. 3. Distribution of speaker dependent Code-Switching rates after clustering

Further analyses show that, on the one hand, the classes divide different nation-
alities while, on the other hand, the gender of the speakers and the speaking
style is similar in all classes. Hence, Code-Switching attitude seems to depend
on the nationality but not on the gender or style. Table 3 summarizes the most
important results for three classes.

Table 3. Analysis of the speakers that are clustered into one class

(con. denotes conversational speech, while iv. stands for interview)
Class nationalities gender style

1 66 % Malaysia, 34 % Singapour 58 % female, 52 % male 5 % con., 95 % iv.
2 7 % Malaysia, 93 % Singapour 55 % female, 45 % male 47 % con., 53 % iv.
3 0 % Malaysia, 100 % Singapour 66 % female, 34 % male 29 % con., 71 % iv.
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4.2 Language Modeling

Training We train two different language models (LM): An N-Gram LM for
the decoding process and a recurrent neural network LM for rescoring.

N-Gram Language Model for Code-Switching We use the SRI Language Model-
ing Toolkit [18] to build trigram LMs from the SEAME training transcriptions.
These models are interpolated with two monolingual language models that were
created from 350k English sentences from NIST and 400k Mandarin sentences
from the GALE project. The vocabulary of 30k entries contains all words in the
transcriptions and the most frequent words in the monolingual corpora. Further-
more, characteristics of Code-Switching from the SEAME training transcriptions
are analyzed and additional Code-Switching text is generated artificially as de-
scribed in [21].

Recurrent Neural Network Language Modeling for Code-Switching In this para-
graph, we describe the original version of the RNNLM toolkit [11] and our exten-
sion to it which is illustrated in figure 4. Vector w(t), which represents the cur-
rent word using 1-of-N coding, forms the input of the RNN. Its dimension equals
the size of the vocabulary. Vector s(t) contains the state of the network and is
called ’hidden layer’. The network is trained using back-propagation through
time (BPTT), an extension of the back-propagation algorithm for RNNs. With
BPTT, the error is propagated through recurrent connections back in time for
a specific number of time steps. Hence, the network is able to remember infor-
mation for several time steps. The matrices U , V and W contain the weights for
the connections between the layers. They are learned during the training phase.
Moreover, the output layer is factorized into classes to accelerate the training
and testing processes. Every word belongs to exactly one class. The classes are
formed during the training phase depending on the frequencies of the words.
Vector c(t) provides the probabilities for each class and vector y(t) the prob-
abilities for each word given its class. Hence, the probability P (wi|history) is
computed as shown in equation 3.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (3)

In our extension of the RNNLM, the output classes do not depend on word
frequencies but on languages. We use the language categorization described in
section 3.1. Therefore, our model consists of four classes: One class for English
words, one for Mandarin words, one for other languages and one for particles.
We do not only intend to predict the next word but also the next language
in our bilingual corpus. Hence according to equation 3, the probability of the
next language is computed first and then the probability of each word given the
language. Furthermore, we add another vector f(t) to the network which provides
features corresponding to the current word and concantenate the former input
layer with this vector. According to the analyses described in section 3, we use
POS tags as features. Vector f(t) consists of 67 elements (31 Mandarin POS
tags, 34 English POS tags, one feature for words classified as other languages
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Fig. 4. RNNLM for Code-Switching
based upon a figure in [10]

and one feature for particles). During the training and testing phases, not only
the current word is activated but also its feature. Because the POS tags are
integrated into the input layer, they are also propagated into the hidden layer
s(t). Thus, features from several previous time steps are stored in the history.
Hence in equation 3, the term P (ci|s(t)) computes the next language ci using
not only information about previous words, but also previous features.

Adaptation After the clustering, we retrain our models with the data of the
different clusters. For the N-Gram model, we interpolate the baseline N-Gram
model with an N-Gram model trained on the texts of one class. Hence, we obtain
one N-Gram model per class. The interpolation weights are chosen to minimize
the perplexity of the development set speakers that are similar to the class.
Analog to this, we retrain one RNNLM per class. We perform one-iteration
training using the texts of the different classes.

Rescoring The decoding process contains two different passes. In the first pass,
we run the speech recognition system to extract the N-best hypotheses using the
speaker independent N-Gram LM. Based on the average score of the CS attitude
dependent RNNLM on these N-bests, each speaker is assigned to a specific CS
attitude. In the second pass, we rerun the decoding process using our CS attitude
dependent N-Gram for each speaker and rescore the 100-best hypotheses using
the CS attitude dependent RNNLM to obtain the best hypothesis.

5 Experiments and Results

This section reports the experiments and evaluations performed on the challenge
of CS language modeling. Since the models are adapted to fit better to individual
speakers, their perplexities are computed speaker-wise.



10 N. T. Vu, H. Adel, T. Schultz

5.1 Clustering Experiments with K-Means

The most important parameter in the clustering process is the cluster size. Hence,
different sizes are tested. Since rescoring experiments with the RNNLM are faster
than decoding experiments with the N-Gram model, the following values are
calculated using the 100-best lists of the speaker independent system and the
RNNLM system to compute perplexities and rescore the hypotheses.
Table 4 summons the minimum and maximum perplexity on the eight develop-
ment set speakers in order to detect the most appropriate cluster size.

Table 4. Minimum and maximum perplexity on the development set speakers

Speaker Baseline 2 classes 3 classes 4 classes 5 classes

Speaker 1 257.47 234.29 - 270.57 234.08 - 270.56 233.39 - 267.56 237.32 - 274.98
Speaker 2 221.00 194.78 - 218.96 194.66 - 219.04 194.41 - 216.52 196.96 - 222.16
Speaker 3 253.31 242.94 - 283.21 243.54 - 283.44 242.87 - 280.27 242.03 - 289.04
Speaker 4 201.28 186.14 - 213.38 186.70 - 213.55 185.96 - 212.29 188.37 - 217.14
Speaker 5 339.50 299.69 - 355.34 299.84 - 355.75 299.58 - 349.79 303.15 - 366.97
Speaker 6 151.92 135.00 - 156.76 135.05 - 156.81 134.92 - 156.67 135.49 - 160.82
Speaker 7 225.82 221.99 - 251.83 222.00 - 250.66 223.56 - 252.66 220.47 - 279.62
Speaker 8 194.35 189.30 - 206.97 189.30 - 206.32 188.97 - 207.64 191.10 - 222.73

It can be noted that the results of two, three and four classes are quite similar
and superior to a cluster size of five. Although the worst result per cluster per-
forms worse than the baseline model, most of the classes of each cluster lead to
an improvement of the perplexity. These results support the speaker dependent
analysis: It is possible to adapt the language model to individual Code-Switching
attitudes. The three best cluster sizes (2, 3, and 4 classes) are further evaluated
regarding their word error rate reduction in the rescoring process. This results
in a best cluster size of 3 classes. This is reasonable since two classes might not
cover enough different speaker attitudes, while four or more classes do not con-
tain enough training data per class. Hence, a cluster size of three is chosen for
further evaluations.

5.2 Results

This subsection summons the results of our experiments, including the test of
our models on the evaluation set speakers. Table 5 shows the minimum and
maximum perplexities per speaker of all three adapted models and the baseline
model for each the N-Gram and the RNN LM. Again, the models adapted on
the clustered training data can improve the performance in terms of perplex-
ity for all speakers. Finally, the adapted models are used to decode and rescore
the evaluation set speakers. We use the system in [21] to perform the decoding
process. As performance measure, the Mixed Error Rate (MER) as proposed
in [21] is calculated. It applies word error rates to English and character error
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Table 5. Minimum and maximum perplexities on the evaluation set speakers

Speaker N-Gram Adapted N-Gram RNNLM Adapted RNNLM

Speaker 1 317.84 302.94 - 326.24 200.66 197.74 - 204.82
Speaker 2 265.77 253.73 - 270.81 181.60 175.85 - 185.48
Speaker 3 327.09 302.56 - 352.60 187.04 170.92 - 197.30
Speaker 4 232.83 213.33 - 248.30 174.13 160.58 - 185.28
Speaker 5 367.72 365.47 - 409.25 364.59 327.33 - 392.68
Speaker 6 175.28 162.02 - 181.83 275.89 253.67 - 299.37
Speaker 7 318.50 306.58 - 375.41 286.31 286.30 - 292.29
Speaker 8 292.53 281.57 - 331.04 256.99 241.69 - 268.23

rates to Mandarin and is the weighted average over all English and Mandarin
parts of the speech recognition output. By applying character based error rates
to Mandarin, the performance does not depend on the applied word segmenta-
tion algorithm for Mandarin and thus the performance can be compared across
different segmentations. Table 6 shows the results on the SEAME development
and evaluation set.

Table 6. Mixed error rate results after decoding and rescoring with the adapted models

Model development set evaluation set

Speaker-independent N-Gram model 34.74% 29.23%
Adapted N-Gram model + RNNLM 34.47% 28.89%

6 Conclusions

In this paper, we showed that Code-Switching is a speaker dependent phe-
nomenon. Therefore, we clustered similar Code-Switching attitudes using cosine-
distances. Furthermore, we trained recurrent neural network language models for
the Code-Switching task by adding POS information to the input layer and by
factorizing the output layer into languages. Afterwards, we adapted our back-
ground N-Gram and RNN language model using the corresponding training texts
of these clusters. We showed that this approach leads to significant reductions
in terms of perplexity. Finally, we used these adapted language models to rerun
and rescore the speech recognition system for each speaker and achieved some
improvements in terms of mixed error rate.
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